ECE 340
Lecture 3: Semiconductors and Crystal Structure

Class Outline:

- Semiconductor Crystal Lattices
- Semiconductor Crystal Growth
Key Questions

- Why is crystal order important?
- How is a crystal defined?
- What are the most common types of crystal lattices used in semiconductor devices?
Semiconductor Crystal Lattices

What is the crystal structure?

Crystalline | Polycrystalline | Amorphous

• Crystal structures come in three basic kinds

 – In the **CRYSTALLINE** state the atoms are ordered into a well-defined lattice that extends over very long distances.

 – **POLYCRYSTALLINE** materials consist of small crystallites that are embedded in regions of material.

 – In the **AMORPHOUS** state there is little or no evidence for long-range crystalline order.
Semiconductor Crystal Lattices

What does it matter if it is crystalline or not?

- Crystalline
- Amorphous

- We can get a lot of information from the unit cell:
 - Density of atoms
 - Distance between nearest atoms
 - Calculate forces between atoms
 - Perform simple calculations
 - Fraction of atoms filled in volume
 - Density of atoms
Semiconductor Crystal Lattices

Since we care about crystalline lattices, let’s examine the periodic lattice...

- In the periodic lattice:
 - Symmetric array of points is the lattice.
 - We add the atoms to the lattice in an arrangement called a basis.
 - We can define a set of primitive vectors which can be used to trace out the entire crystal structure.
Semiconductor Crystal Lattices

In this section we consider some of the lattice types that will be important for our discussion of semiconductors...

- Examine the simple cubic structure:
 - All primitive vectors are equal in all three dimensions.
 - Here again, the balls represent the lattice points, but no basis has been added.

\[
\begin{align*}
 \mathbf{a}_1 &= a\mathbf{\hat{x}} & (2.1) \\
 \mathbf{a}_2 &= a\mathbf{\hat{y}} & (2.2) \\
 \mathbf{a}_3 &= a\mathbf{\hat{z}} & (2.3)
\end{align*}
\]
Semiconductor Crystal Lattices

A simple variant on the cubic lattice is the body-centered cubic lattice...

- Examine the body-centered cubic lattice (bcc):
 - Same as simple cubic but with an additional atom at the center of the cell.
 - **Primitive vectors** are written in the more convenient symmetric form but other representations exist.

\[
\begin{align*}
\mathbf{a}_1 &= \frac{a}{2} [\hat{x} + \hat{y} - \hat{z}] \tag{2.4} \\
\mathbf{a}_2 &= \frac{a}{2} [-\hat{x} + \hat{y} + \hat{z}] \tag{2.5} \\
\mathbf{a}_3 &= \frac{a}{2} [\hat{x} - \hat{y} + \hat{z}] \tag{2.6}
\end{align*}
\]
Semiconductor Crystal Lattices

A final variant is the face-centered cubic lattice...

- Examine the face-centered cubic lattice (fcc):
 - This is formed by adding an additional atom in the center of each face of the simple cubic configuration.
 - This is the most important configuration we will consider.
 - The primitive vectors have been written again by using symmetry considerations.

\[
\begin{align*}
a_1 &= \frac{a}{2}[\hat{x} + \hat{y}] \quad (2.7) \\
a_2 &= \frac{a}{2}[\hat{y} + \hat{z}] \quad (2.8) \\
a_3 &= \frac{a}{2}[\hat{z} + \hat{x}] \quad (2.9)
\end{align*}
\]
But be careful...

- There is a difference between unit cells and primitive cells.
 - The primitive cell is the volume associated with one lattice point.
 - Often it is more convenient to use a unit cell that is larger than the primitive cell since such a cell illustrates the crystal symmetry in a clearer way.

\[
V_{\text{unit}} = a_3 \cdot a_1 \cdot a_2 = a^3
\]
\[
V_{\text{primitive}} = a_3 \cdot (a_1 \times a_2) = \frac{a^3}{4}
\]
Now let’s look at the silicon crystal...

- To discuss the crystal structure of different semiconductors we will need to account for the **basis** unit that is added to each **lattice** point.
 - Elemental semiconductors such as silicon and germanium both exhibit the **diamond** structure.
 - Named after one of the two crystalline forms of carbon.

- Here we display the silicon **unit cell**.
 - The balls each represent one silicon atom.
 - The solid lines represent chemical bonds.
 - Note how the bonds form a tetrahedron.
 - How many atoms per unit cell?
Semiconductor Crystal Lattices

Looks confusing, but it’s not so bad...

- It is really just two inter-penetrating fcc lattices with a diatomic basis.
- It looks more complex because we do not show atoms extending beyond the unit cell by convention.
- In the figure below, each different color represents pairs of atoms from the same basis.
- The black balls represent atoms with one atom in their basis outside the unit cell.
Semiconductor Crystal Lattices

What about compound semiconductors?

• Many compound semiconductors such as Gallium Arsenide (GaAs) exhibit the **zincblende** crystal structure.
 - The atomic configuration is the same as **diamond**.
 - The difference lies in that each successive atom is from a different chemical element.

Useful questions to ask:

• How many atoms per unit cell?
• Avogadro’s number: \(N_A = \# \text{ atoms} / \text{mole} \)
• Atomic mass: \(A = \text{grams} / \text{mole} \)
• Atom counting in unit cell: \(\text{atoms} / \text{cm}^3 \)
• How do you calculate density?
Crystal Growth - Silicon

- Seed Crystal
- Silicon Chunks
- Molten Silicon
- Silicon Ingot

Image of a silicon ingot.
Heterojunctions are typically produced by a process known as **MOLECULAR-BEAM EPITAXY**.

- This is performed in an ultra-high vacuum (UHV) evaporation chamber working at pressures of 10^{-11} Torr.
- The materials to be grown are provided from heated **KNUDSEN CELLS** in which the individual elements are individually vaporized.

A SCHEMATIC DIAGRAM SHOWING THE KEY COMPONENTS OF A MOLECULAR-BEAM EPITAXY SYSTEM
Careful control of the deposition rates and the substrate temperature are required to realize heterojunctions with well-defined interfaces.

- In order to achieve high uniformity the substrate is heated to approximately 600 °C and is slowly rotated in the vacuum chamber.
- The growth rate of the epitaxial layer is of order several micro \(\text{MICRONS PER HOUR} \), which allows for atomic level resolution in the growth process.
- The growth is monitored in situ using electron diffraction and mass spectroscopy.

TEM IMAGES OF EPITAXIALLY GROWN GaAs/AlGaAs
Example Problem

Treating atoms as rigid spheres with radii equal to $\frac{1}{2}$ the distance between the nearest neighbors, show that the ratio of the volume occupied by atoms to the total available volume in an FCC is 74%.