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We study a new type of three-dimensional topological superconductor that exhibits Majorana zero
modes (MZM) protected by a magnetic group symmetry, a combined antiunitary symmetry composed
of a mirror reflection and time reversal. This new symmetry enhances the noninteracting topological
classification of a superconducting vortex from Z2 to Z, indicating that multiple MZMs can coexist at the
end of one magnetic vortex of unit flux. Especially, we show that a vortex binding two MZMs can be
realized on the (001) surface of a topological crystalline insulator SnTe with proximity induced BCS
Cooper pairing, or in bulk superconductor InxSn1−xTe.
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Topological superconductors are superconductors that are
fully gapped in the bulk and yet possess gapless boundary
excitations at zero-dimensional [1–3] (0D), one-dimensional
(1D), or two-dimensional [4–8] (2D) boundaries, called
Majorana zero modes (MZM), respectively [9–11]. 0D
MZMs have so far received the most attention
[2,9,12–17]. The proposals of realizing these states include
vortex bound states in pþ ip superconductors [1], vortex
boundstates on surfacesof a strong topological insulator (TI)
with induced s-wave superconductivity [3] and the end states
of a spin-orbital coupled quantum wire with proximity
induced s-wave superconductivity and subject to a strong
Zeeman field [12–16].
In the above proposals of 0D MZM, a single MZM

exists, while any two Majorana modes will hybridize and
open a gap. In the presence of two or more Majorana
modes, perturbations in the form ΔH ¼ iγaγb can be
added, where γa denotes a Majorana fermion operator of
species a. Such perturbations gap Majorana modes in pairs,
giving Z2 topological classification of 0D systems with no
symmetry. The existence of multiple Majorana modes
requires symmetry to forbid their hybridization. For exam-
ple, with (spinful) time-reversal symmetry (TRS), a pair
of MZMs can appear if they make a Kramers’ pair [4–6].
Local and unitary symmetries in general enhance the
classification to Zk, where 2k is the number of complex
eigenvalues of the symmetry operator [18–21]. The non-
trivial phases in these classes require intrinsic or induced
unconventional superconductivity, with sign changes in the
pairing amplitude between different Fermi surfaces.
Here we propose a new class of 3D topological super-

conductors that have multiple MZMs bound to each
magnetic vortex core of unit flux on certain surface
terminations. The hybridization between MZMs is prohib-
ited by a nonlocal magnetic group symmetry: a vertical

mirror plane reflection followed by TRS, denoted by MT.
This is the generic symmetry of any superconductor that
(i) has a mirror symmetric lattice, (ii) has mirror symmetric
and TRS invariant Cooper pairing, and (iii) is subject to an
external magnetic field and/or Zeeman field parallel to
the mirror plane. Neither mirror reflection nor TRS is a
symmetry as they both invert the magnetic or Zeeman field
which is a pseudo-vector, but their combination leaves
the field invariant. This symmetry was first identified by
Tewari and Sau [22] as a “new TRS” in quasi-1D super-
conducting quantum wires with Zeeman field along the
length, which can protect multiple MZMs, but is absent
when inter subband Rashba coupling is included; in
Ref. [23], a spin-orbital coupled quasi-1D optical lattice
is proposed which has this exact symmetry and therefore
hosts multiple MZMs. In this Letter, we prove that the
topological classification protected by MT is Z in general,
and then we show that a z ¼ 2 state (having two protected
MZMs at each vortex core) can be realized on the (001)
plane of a topological crystalline insulator [24–26] (TCI)
SnTe with induced or intrinsic s-wave superconductivity on
the surface. We expect that this phase can be realized in a
(001)-thin-film SnTe deposited on an BCS-superconducting
substrate such as NbSe2 or bulk superconductor
InxSn1−xTe.
In the type-II limit, the magnetic field penetrates into the

superconductor in the form of vortex lines along the field
direction. We take the limit where vortex lines are far away
from each other and can be considered isolated. Now we
terminate the system on a surface perpendicular to the
mirror plane. A terminated vortex line has the particle-hole
symmetry (PHS) and the magnetic group symmetry MT.
Assume that the end of a vortex line hosts several MZMs
close to each other. Their Hamiltonian can be written in the
PHS symmetric basis (Majorana basis) as
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Ĥ ¼ i
X
a;b

Habγaγb; (1)

where Hab is a real skew-symmetric matrix. A matrix
representation of MT is in general

MT ¼ KM; (2)

whereM is a unitary matrix andK is complex conjugation.
Physically, we have the following constraints on the
form of MT : (i) it must commute with PHS and
(ii) M2

T ¼ M2 × T2 ¼ −1 × ð−1Þ ¼ 1, as both mirror
reflection and time reversal square to −1 for a spinful
fermion. (Here, M and T represent operators for mirror
reflection and TRS, respectively, in the single fermion
Hilbert space.) They require thatM be real and symmetric.
Hence, the eigenvalues of M can only be �1. If MT is a
symmetry of Ĥ, we have

½iH; KM� ¼ fH;Mg ¼ 0: (3)

Equation (3), after straightforward algebraic work [27],
leads to the result that there are exactly jtrðMÞj eigenvalues
ofH fixed at zero. Since jtrðMÞj is an integer, there can be
an integer number of MZMs at each end of the vortex line,
giving rise to a Z classification.
We have yet to determine the physical requirements,

including band structure and the form of Cooper pairing,
for a nontrivial superconductor that supports such vortices
to appear. In this Letter, we do not provide a general answer
to this question, but instead provide a realization for each
nontrivial phase in a class of heterostructures made of
conventional BCS superconductors and new materials
called topological crystalline insulators (TCI) having mir-
ror symmetry and TRS. In TCI, the surface states have
multiple Dirac points protected by mirror symmetries, if the
surface termination is perpendicular to the mirror plane.
Rock-salt (Pb,Sn)Te is a TCI having four Dirac cones on
the (001)-surface [28–30]: two along ky ¼ 0 (denoted by
D1;3) and two others along kx ¼ 0 (D2;4), protected by
mirror planes of M11̄0 and M110, respectively. At the
vicinity of each Dirac point, the low energy effective
theory is that of 2D massless Dirac fermions [Fig. 1(a)].
We then assume that a Cooper pairing induced on the
surface states preserves all lattice symmetries and TRS. In
reality, this surface superconductivity can be proximity
induced by a conventional BCS superconductor. We prove
that given the induced superconductivity in SnTe, any
vortex line along {001} has two MZMs protected by MT.
Fourfold symmetry that is specific to this system can be
broken without changing the result. An extension of the
discussion [27] applies to a general TCI with induced
superconductivity, showing that there are exactly jCMj
MZMs at the end of a vortex line protected by MT, where
CM is the mirror Chern number of the TCI.

First, we consider the surface states in the normal state.
At Dirac point D1, the effective Hamiltonian is in general
given by ĥ1 ¼

P
jqj<Λ;τ;τ0¼↑;↓h

ττ0
1 ðqÞf†1τðqÞf1τ0 ðqÞ, where

f1τðqÞ is the annihilation operator at k ¼ D1 þ q with
pseudospin τ, denoting each state of the degenerate doublet
at D1. The form of h1ðqÞ is fixed by choosing the
representation of the little group at D1 [31] to be M11̄0 ¼
iσy and C2T ¼ Kσx, where C2T ¼ C2 � T is a twofold
rotation followed by TRS. Using the symmetry constraint
½C2T; ĥ1� ¼ ½M11̄0; ĥ1� ¼ 0, we have,

h1ðqÞ ¼ v0qxσ0 þ v1qxσy þ v2qyσx (4)

up to the first order of jqj. Here the sign of v1 is determined
by the sign of CM, while other parameters are related
to details of the system. Using C4 symmetry, we can fix the
gauge for Dirac cones centered at D2;3;4: f2;3;4ðC4qÞ≡
C4f1;2;3ðqÞC−1

4 , where C4q is q rotated by π=2, by which
we have

h1ðqÞ ¼ h2ðC4qÞ ¼ h3ðC2qÞ ¼ h4ðC−1
4 qÞ: (5)

In Table I, we list how fiτ transforms under C4v ⊗ T, the
full symmetry group of the (001) plane.
Next, we consider the Cooper pairing on the surface that

does not break any lattice symmetry or TRS, such as that
induced by a conventional BCS superconductor. A generic
expression of a Cooper pairing with zero momentum is
Δ̂¼P

qf
T
1 ðqÞΔXf3ð−qÞþfT2 ðqÞΔYf4ð−qÞþH:c:þOðjqjÞ.

Here we note that, since f1;2;3;4ðqÞ carry momentum around
D1;2;3;4, other intercone pairings and intracone pairings are
not allowed, as both lead to pairs of finite total momentum.
Using Table I, we find the only possible form of ΔX;Y that
preserves all symmetries is

(a)

(b)

FIG. 1 (color online). (a) The dispersion of rocksalt SnTe (001)-
surface bands, calculated using the model Eq. (12) with t1 ¼ −1,
t2 ¼ 0.5, m ¼ 2.5. (b) The dispersion of SnTe (001)-surface
bands with rhombohedral distortion along the [111] direction, the
strength of which is ϵ ¼ 0.1.
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ΔX ¼ ΔY ¼ Δ0σx; (6)

where Δ0 is a real number representing the pairing
amplitude. Combining Eqs. (4)–(6), we obtain the BdG
Hamiltonian as

Ĥ0 ¼
X
jqj<Λ

�X
i

f†i ðqÞhiðqÞfiðqÞ

þ Δ0½fT1 ðqÞσxf3ð−qÞ þ fT2 ðqÞσxf4ð−qÞ þ H:c:�
�

¼
X
r

�X
i

f†i ðrÞhið−i∇ÞfiðrÞ

þ Δ0½fT1 ðrÞσxf3ð−rÞ þ fT2 ðrÞσxf4ð−rÞ þ H:c:�; (7)

where in the second line we have defined fiðrÞ≡
ð1= ffiffiffiffi

N
p ÞPjqj<λfiðqÞeiq·r in real space. Since fiðqÞ has

momentum, Di þ q, fiðrÞ represents the slowly oscillating
part of the wave function. The energy dispersion of
Eq. (7) is

EðqÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðv0qy − μ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21q

2
x þ v22q

2
y

q
Þ2 þ Δ2

0

r
; (8)

where each band is fourfold degenerate. Equation (8)
shows that the bulk is a fully gapped superconducting
state for any parameter set with Δ0 ≠ 0. A superconducting
vortex is created by replacing the constant pairing ampli-
tude Δ0 with a spatially varying function having winding
number þ1 (the case of −1 can be similarly discussed).
Here we take

Δ0 → ΔðrÞeiθ (9)

written in polar coordinates, whereΔðrÞ is a monotonic real
function of r that satisfies Δð0Þ ¼ 0 and Δð∞Þ ¼ Δ0. The
vortex bound state(s) can be found by diagonalizing Eq. (7)
after the substitution of Eq. (9). As we have mentioned, all
parameters except the sign of v1 can be adiabatically
changed, so here we take v0 ¼ μ ¼ 0 and −v2 ¼ v1 ≡ v
without changing the topological class of the vortex. For
these parameters, the bound state problem can be solved
analytically. There are four MZMs, given by

γ1 ¼
X
r

ðf1↓ðrÞ � f3↓ðrÞ þ H:c:Þe−
R

r

0
jΔðr0Þjdr0 ;

γ2 ¼
X
r

ðeiπ=4f2↓ðrÞ � eiπ=4f4↓ðrÞ þ H:c:Þe−
R

r

0
jΔðr0Þjdr0 ;

γ3 ¼
X
r

ðif3↓ðrÞ∓if1↓ðrÞ þ H:c:Þe−
R

r

0
jΔðr0Þjdr0 ;

γ4 ¼
X
r

ðei3π=4f4↓ðrÞ∓ei3π=4f2↓ðrÞ þ H:c:Þe−
R

r

0
jΔðr0Þjdr0 ;

(10)

where the upper or lower sign is taken if sgn½v1Δ0� ¼ þ=−
and the normalization factors are omitted. MT ≡Mxz × T
is a symmetry of the system with vortex, and using Table I,
we obtain the matrix representation of MT ¼ KM in the
basis furnished by γ1;2;3;4:

M ¼ sgn½v1Δ0�

0
BBB@

1 0 0 0

0 0 0 1

0 0 1 0

0 1 0 0

1
CCCA: (11)

Since trðMTÞ ¼ 2sgn½v1Δ0�, there are two MZMs that are
topologically protected by MT. Although MT is evaluated
using the explicit forms of bound state solutions, its trace is
a good quantum number invariant under any adiabatic
change of parameters. While we have four MZMs given in
Eq. (10), only two are protected. This is because one can
write down a perturbation ΔĤ ¼ iλðγ1γ2 þ γ2γ3 þ γ3γ4 þ
γ4γ1Þ that preserves MT and gaps two out of the four
MZMs. This perturbation does not break the fourfold
rotation symmetry either, which means that C4 symmetry
here does not lead to additional degeneracy. A more
detailed study in Ref. [27] shows that when the size of
the vortex is far greater than the lattice constant, the above
perturbation is very small and the other two modes will
hence be very close to the zero energy.
We have so far assumed that the Fermi level is inside the

bulk gap of the 3D system, making it sufficient to consider
only the surface electrons. This assumption is impractical
for experimentally realizing and measuring the MZMs
because when the Fermi level is inside the bulk gap, the
proximity-induced SC decays exponentially fast away from
the interface, leaving too small a superconducting gap on
the open surface for measurements. Therefore, we must
find out if the above results hold when the Fermi level is
inside the conduction or valence bands. Generically, a
vortex line undergoes a quantum phase transition at some
critical chemical potential μc inside the bulk bands, at
which the MZMs localized at the two ends extend into the
bulk of the line and hybridize [32–34]. Below we numeri-
cally confirm this picture in 3D SnTe.

TABLE I. Transformation of operators under C4v and TRS.

f1 f2 f3 f4

M11̄0 ðiσyÞf1 ð−iσyÞf4 ð−iσyÞf3 ð−iσyÞf2
M110 ð−iσyÞf3 ðiσyÞf2 ð−iσyÞf1 ð−iσyÞf4
T −σxf3 −σxf4 σxf1 σxf2
C4 f2 f3 f4 −f1

PRL 112, 106401 (2014) P HY S I CA L R EV I EW LE T T ER S
week ending

14 MARCH 2014

106401-3



We develop a 3D tight-binding model to describe the
normal state of the TCI

HðkÞ ¼ ½m − t1ðcos 2kx þ cos 2ky þ cos 2kzÞ�Σz0

þ t2½sin kxðcos ky þ cos kzÞΣxx

þ sin kyðcos kx þ cos kzÞΣxy

þ sin kzðcos kx þ cos kyÞΣxz�; (12)

where Σij ≡ σi ⊗ σj and the parameters are chosen as
fm; t1; t2g ¼ f2.5;−1.0; 0.5g. The model has cubic sym-
metry and TRS, and the BZ of this model is that of an
fcc lattice (same as the real material); the symmetry
group generators are given by the following matrices:
C4z ¼ σ0 ⊗ eiσzπ=4, C4x ¼ σ0 ⊗ eiσxπ=4, P ¼ Σz0, and
T ¼ KðiΣ0yÞ. The model gives the correct topological
surface states as shown in Fig. 1. An onsite s-wave pairing
with a vortex line is given by ΔðrÞ ¼ Δð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
Þ

eiθðiΣ02Þ. We take the simplest form of ΔðrÞ: ΔðrÞ ¼ 0
for r < r0 and ΔðrÞ ¼ Δ0 for r ≥ r0. We solve the
eigenvalue problem of a vortex line with periodic boundary
along the z axis, and plot the energy spectrum against
increasing chemical potential in Fig. 2. The result shows
that the phase transition happens at critical chemical
potential μc > μb, where μb is the minimum of the
conduction band. (In the particular parameter set we choose
to calculate Fig. 2, μc ≈ 0.38 and μb ≈ 0.23.) We note that
there are two gap closings at μc with kz ¼ �kc, in contrast
to just one closing in Ref. [32], because here the transition
is between a vortex line having two MZMs and one
having none.
Now we discuss the effect of the spontaneous rhombo-

hedral distortion of SnTe at low temperatures, which has
attracted theoretical and experimental attention [25,31,35].
The lattice distortion is equivalent to a small strain tensor
εxy ¼ εyz ¼ εxz ¼ ε, which breaks both C2 and M110. It
opens gaps at two Dirac points along the Γ̄ Ȳ direction,

leaving the other two gapless, as M11̄0 is preserved. The
strain gaps at D2;4 can also be observed in our TB model
adding a perturbation (one could verify that it transforms
the same way as the strain tensor under the point group)
ϵ½ðcos2kx − cos2kyÞ sin2kz þ ðcos2ky − cos2kzÞ sin2kxþ
ðcos2kz − cos2kxÞ sin2ky�Σy0 [see Fig. 1(b)]. However,
this effect does not entail any topological transition in
the vortex line. This is because the two MZMs at each end
are protected by MT ≡M11̄0 × T, unbroken by the strain.
Based on the theory, we design a simple TCI-SC

heterostructure to realize the nontrivial state with z ¼ 2.
A thin-film SnTe is deposited on the top of a conventional
superconductor such as NbSe2. The Fermi level in the thin
film is tuned through gating to a value inside but near the
edge of the conduction or valence band (μb < jμj < μc).
When the Fermi level is in the bulk bands, the proximity-
induced SC pairings on the bottom layer of SnTe extend to
the bulk with a power law decay. Therefore, on the top layer
the SC pairing is still finite, and the whole thin film has an
induced pairing that preserves all lattice symmetries and
TRS. According to our theory, an isolated magnetic vortex
in the thin film can bind exactly two MZMs on the top
surface, which may be observed through tunneling mea-
surements. Following a discussion similar to that presented
in Ref. [36], we expect a zero bias conductance peak of
intensity 4e2=h, if the tip is correctly located at the vortex.
While the intrinsic rhombohedral strain as discussed above
cannot open a gap between the MZMs, an applied strain
which also breaks M11̄0 can break the double degeneracy,
making the vortex line fully gapped, and the peak splits into
two at nonzero voltages with intensity 2e2=h each. The
vortex bound MZMs may also be realized in superconduct-
ing InxSn1−xTe, if the bulk superconducting gap is trivial,
in contrast to some theoretical proposals. The proposed
nontrivial odd parity pairing in the bulk leads to 2D
Majorana modes, while here we have shown that even if
the bulk gap is trivial, two MZMs can still be observed at
vortex lines that are parallel to the mirror planes of the
crystal, given that the Fermi energy is in the inverted regime
at the edge of the bulk bands.
For the general case of a noninteracting TCI with mirror

Chern number Cm, we can similarly prove that a vortex line
parallel to the mirror plane can bind exactly Cm MZMs at
each end. If an interaction, i.e., a four-Majorana term, is
added to the system, the Z classification of a vortex line
reduces to Z8 without breaking any symmetry. If Cm ¼ �4,
the noninteracting ground state is fourfold degenerate, but a
four-Majorana interaction, in the form λγ1γ2γ3γ4 lifts the
degeneracy down to twofold. If Cm ¼ �8, the noninteract-
ing ground state is 16-fold degenerate, but a four-Majorana
interaction that breaks the SO(8) symmetry (rotation
symmetry in the flavor space) renders the many-body
ground state nondegenerate [37].
Finally, we discuss limitations of the theory. It presumes

mirror symmetry in zero field, which is equivalent to the

FIG. 2 (color online). The dispersion of the lowest bands in the
vortex line as a function of kz and chemical potential μ close to
the critical point where the band gap closes at (kc, μc). Because of
PHS, there is another band crossing at (−kc, μc).
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pure limit, because exact mirror symmetry is broken by any
type of impurities. However, randomly distributed impu-
rities may preserve mirror symmetry “on average” [38]. For
this reason, the theory also applies in the case of many
impurities if the size of the vortex is much larger than the
average spacing of impurities, as long as the impurity
intensity is much weaker than the superconducting gap. We
also require the vortices to be sufficiently separated from
each other such that the size of the Majorana fermions is
much smaller than their average spacing. In our discussion,
the magnetic field only supplies the vortex while the
Zeeman field is ignored. The Zeeman field preserves MT
and hence does not hybridize the MZMs, but we require
that its strength not exceed the superconducting gap.
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