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Three-dimensional (3D) topological-insulator—s-wave-superconductor heterostructures have been predicted as
candidate systems for the observation of Majorana fermions in the presence of superconducting vortices. In
these systems, Majorana fermions are expected to form at the interface between the topological insulator and
the superconductor while the bulk plays no role. Yet the bulk of a 3D topological insulator penetrated by a
magnetic flux is not inert and can gap the surface vortex modes, destroying their Majorana nature. In this work,
we demonstrate the circumstances under which only the surface physics is important and when the bulk physics
plays an important role in the location and energy of the Majorana modes.
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I. INTRODUCTION

Topological quantum computation is one of the most active
areas of research in condensed-matter physics. It promises to
provide the advantages of quantum computation such as vast
parallelism but with an inherent immunity from decoherence.
This allows for the formation of qubits without the need for
error-correcting algorithms.! The existence and stability of
non-Abelian anyons forms the backbone of any architecture
for topological quantum computation.”* The simplest of these
excitations is the Majorana fermion. Many diverse systems
are predicted to harbor these heretofore elusive excitations,
including p-wave superconductors,>* the v =3 fractional
quantum Hall state,” and cold-atom systems.%’

Recently, the search for Majorana fermions has expanded
into the family of materials commonly referred to as topolog-
ical insulators. Generally speaking, topological insulators are
a class of materials with an insulating, time-reversal, invariant
band structure for which strong spin-orbit interactions lead
to an inversion of the band gap at an odd number of time-
reversed points in the Brillouin zone. Topological insulators
are differentiated from other ordinary band insulators by
the presence of surface states containing Fermi arcs, which
encapsulate an odd number of Dirac points and are associated
with a Berry phase of . Normally, such degeneracy points in
the band structure are easily removed by any perturbations, but
in the case of topological insulators, the band crossing at the
boundaries is protected because Kramer’s theorem prevents
time-reversal invariant perturbations from opening up a gap
in the energy spectrum.® In the inceptive work of Fu and
Kane,” they show that coupling s-wave superconductors to
3D, time-reversal, invariant topological insulators®!%-!2 via the
proximity effect may be a potential platform to realize these
non-Abelian anyons. In particular, Fu and Kane show that the
surface of a 3D topological-insulator—s-wave-superconductor
heterostructure exhibits many of the same properties as a
chiral p-wave superconductor* in that the cores of the vortex
excitations may harbor Majorana fermions.

Nevertheless, while the analysis presented in Ref. 9
considers the gapless, surface-state Hamiltonian proximity
coupled to a superconductor, it ignores the properties of the
bulk topological insulator. If the bulk were simply a trivial
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insulator, it would be inert and no further considerations
would be required. However, it is known that topological
insulators react to the presence of thin-flux tubes,'*!* which
can generate a ‘“worm-hole” effect that traps low-energy states
on the flux tube. This is of particular concern as the simplest
approach to create vortices in a 3D topological-insulator—
s-wave-superconductor heterostructure would be to coat the
surface of the 3D topological insulator with a type-II s-wave
superconductor and then use magnetic flux tubes generated
by an applied magnetic field to proliferate the vortices, which
would then contain the Majorana states. In this work, we seek
to understand exactly when it is sufficient to only consider the
surface physics, and when one must include the bulk physics.
Very interesting work in this general direction is discussed in
Ref. 15, where the role of chemical potential in the stability
of the Majorana vortex modes is discussed for a topological
insulator whose entire bulk has become superconducting.
Here, instead, we focus only on the proximity-effect scenario
and the effects of the applied magnetic flux necessary to create
a field of vortices.

The paper is organized in the following manner: In Sec. II,
we detail the topological insulator Hamiltonian utilized in this
work. In Sec. III, we review the physics resulting from the
addition of very thin magnetic flux lines in 3D topological
insulators. In particular, we review how a magnetic flux line
connects the surfaces of 3D topological insulators in which it
enters and exits with a line of low-energy modes. In Sec. IV,
we extend our analysis from the addition of magnetic flux
lines in 3D topological insulators to topological insulators
with s-wave superconducting pairing on the top and bottom
surfaces. In this system, we discuss two different physical
regimes delineated by the spread of the magnetic flux as it
penetrates the heterostructure. In the first physical regime, we
study the behavior of the topological insulator-superconductor
heterostructure when the spread of the magnetic flux lines
inserted into the system are limited in spatial extent to a
size on the order of the lattice constant. This leads to the
removal of the zero-energy Majorana state from the system as
the surface bound states may now tunnel along the magnetic
flux tube and annihilate the states on the other surface. In
the second regime, we study the case when the spread of
the magnetic flux line has a much wider spatial extent. In
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this situation, the Majorana fermions become localized at the
interface between the topological insulator and proximity-
coupled superconductor and the bulk remains inert so that
only the surface physics need be considered.

II. MODEL HAMILTONIAN

In order to capture the essential physics of the problem,
we use a minimal bulk model for a 3D topological insulator,
which consists of a gapped Dirac Hamiltonian

Hp = chHp(p),
P

=Y clldu(p)I* + M(P)Ic,, (1
P

wherea = 1,2,3; T = 1" Q0% 0 = t: ® ;0% is spin; t¢
is an orbital degree of freedom representing orbitals A, B; and
cp = (Cpat Cpal CpBt chL)T. In this work, to illustrate the
salient physics, we will use both a continuum description with

do(p) = hvppa, M(p)=m — (1/2)bp?, 2
and a lattice description with
da(p) = (hvp /a) sin(p,a), 3)
and
M(p) = (b/a*)[cos(pya) + cos(pya) + cos(p.a)]
—3b/a® +m, )

where vp,m, and b are material parameters and a is the
lattice constant. These material parameters may be adjusted
using the previously tabulated constants based on density
functional theory (DFT) calculations'®!” to fit many of the
most common 3D topological insulators. Here, to simplify the
notation, we will set a and vy equal to unity in the remainder
of the work, unless otherwise noted. This model has time-
reversal symmetry with 7 = [ ® ic ¥ K, where K is complex
conjugation. For generic values of m # 0, the system is a
gapped insulator and we focus on the low-energy regime when
m ~ 0. Assuming translation symmetry, the energy spectrum
of the continuum model is Ex = 4+/p2 + [m — (1/2)bp?]2,
with each band doubly degenerate. As a convention, which is
consistent with the behavior in canonical topological insulators
such as BirSe;, we choose b > 0 and, as a result, the trivial
(topological) insulator state occurs whenm /b < 0 (m /b > 0).
In the following, when we refer to a topological insulator state,
we are referring to a state described by the model given by
Eq. (1) withm > 0 and b > 0.

III. MAGNETIC FLUX LINES IN 3D TOPOLOGICAL
INSULATORS

The physics of thin-flux lines in the bulk of a topological
insulator was originally considered in Refs. 13 and 14. Let
us begin with an infinite solid cylinder of a 3D topological
insulator whose length is placed along the z direction with a
cylindrical hole drilled through the center, as seen in Fig. 1(a).
We take the inner and outer radii to be R; and R, respectively.
Due to the characteristic property of time-reversal, invariant,
topological insulators, there are low-energy modes bound to
the inner and outer cylindrical surfaces. However, the surface

PHYSICAL REVIEW B 84, 144507 (2011)

FIG. 1. (Color online) (a) Schematic of a cylindrical 3D topo-
logical insulator with a hole drilled through the center. The blue
line represents a flux tube threaded through the cylindrical hole.
(b) Schematic of a heterostructure of a topological insulator thin
film sandwiched between two s-wave superconductors. The thin
blue lines represent //2e flux tubes, which generate vortices in the
superconductor layers.

fermions have a w-Berry phase when a particle winds around
the Fermi surface. This leads to a condition that there will be
no exact zero modes in the surface energy spectrum on the
inner or outer surfaces, as long as we consider a cylinder of
finite radius. To be clear, surface electrons that travel around
the azimuthal direction on the inner or outer surfaces pick up
a mw-Berry phase leading to effective antiperiodic boundary
conditions, which shifts the zero-momentum Fourier mode
away from zero energy. To recover the exact zero modes, we
must twist the boundary conditions back to being periodic. This
is accomplished by threading 7 flux (¢o/2 = h/2e) through
the hole drilled in the cylinder.'*'*

In order to be concrete about the behavior of these
zero-energy modes, we begin with the continuum-model
Hamiltonian for a topological insulator introduced in Eq. (1)
and assume the cylindrical with flux ¢ in the unit of A/e
threaded through the interior hole. Keeping only the linear
terms in p, we get

H = mt, ® I+ (px - eAx)Tx ® o
+(py —eAy)T, ® 0oy + p;Tx Q 0. (%)

In Eq. (5), the vector potential is A= %%(—y}? + x9). As
we have now added the magnetic flux into our Hamiltonian,
momenta p, and p, are no longer good quantum numbers.
It is important to note that the Hamiltonian should be solved
in real space, where the momentum operators are represented
as py— —id/dx and p,— —id/dy. First, we will consider
the case p, =0 and solve for the zero-mode eigenstates.
By converting from Cartesian coordinates (x,y) to polar
coordinates (r,0), the Hamiltonian becomes

m 0 0 P_g
0 m P9 0

Hiinear = 0 P, —-m 0 >
P9 0 0 —m
Ta 8 i
Pr=e’| —4+— -2 6
o= [iar + rof r :| ©)

. d a 1)
P, = -0 | = .
o= |:i8r rof + r i|
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As we are searching for the zero-energy modes in the system,
we must solve the eigenvalue problem for this matrix. For the
energies, we obtain

E+5—¢
Ejr = i+, @)
i
with corresponding eigenstates
e =y e 7 i(e+1)0
|1//E > = —(el 70707iel +1) )Tv
N o/ 2r ®)
— f,gl m(r')dr' ) )
|wE_> — —(O, _ iel([-l—l)e,elgﬁ,o)'r’
o~/ 2r
where « is a normalization coefficient defined as
00 T ’ ’
M:h/<ﬂhmwm. )
Ry

In Eq. (7), we note that £, is an integer, which represents
an angular momentum quantum number, although it should
be noted that for the eigenstates, different components may
possess different angular momenta. Thus, if the flux is ¢ =
1/2 + n for all integers n, then the resultant wave functions,
Yo+ and Yo_ for £ = n, have zero energy.

By following the procedure outlined in Ref. 13, we
now imagine adiabatically shrinking the radius R; — a and
consider a single lattice plaquette as the hole drilled through
the center of the cylindrical topological insulator. Thus,
flux threaded through a line of single plaquettes produces zero
modes localized on the line of plaquettes along the length of
the cylinder on the inner and the outer boundary. If we turn on
P, we will find a Kramers’ pair of propagating modes on the
inner and outer surfaces, which disperse linearly in p,. As we
have time-reversal invariance, we expect modes propagating
in both directions with opposite spin polarizations. Therefore,
a w-flux line confined to a hole, even in the limit where the
hole is reduced to the size of a single plaquette, in a topological
insulator, will trap a single pair of gapless counterpropagating
modes, akin to the 1D holographic edge state found in a 2D
quantum spin-Hall system. This is referred to as the wormhole
effect,' and it demonstrates that the bulk of a topological insu-
lator is not generically inert when in the presence of magnetic
flux.

IV. 3D TOPOLOGICAL INSULATOR-SUPERCONDUCTOR
HETEROSTRUCTURE

Having shown that the presence of magnetic flux in a
3D topological insulator forces one to consider the pres-
ence of a noninert bulk, we proceed to understanding the
effects of coupling type-Il s-wave superconductors to the
surfaces of a 3D topological insulator. We will want to
add a sufficient amount of magnetic flux to generate vor-
tices, yet not so much as to necessitate the consideration
of the interactions or quasiparticle tunneling between vor-
tices. With proximity coupling to an s-wave superconductor,
and in the presence of a magnetic field B, we must use
the Bogoliubov-de Gennes (BdG) mean-field description of
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our Hamiltonian:

1 Hp(p — eA) A
S i D
(10)

with V x A =B, A = A)XI ®ioc?, and ¥, = (¢p ct_p)T.
We consider a heterostructure geometry with a thin film
of topological insulator sandwiched along the z direction
between two s-wave superconductors, as shown in Fig. 1(b).
We model the physics of the superconductors by inserting an
induced s-wave pairing term into the BdG Hamiltonian, which
penetrates into the topological insulator film. Without the
presence of a magnetic field, this implies that Ag(x) = Ag(2).
That is, we assume that the superconducting proximity pairing
is homogenous in the xy plane if no vortices are present.

With this in mind, we can proceed with our analysis of
the effects of the pairing. It is important to note that the
pairing, if weaker than the energy scale of the bulk insulating
gap, will not affect the gapped bulk states of the topological
insulator. However, it will affect the metallic surface states,
which are susceptible to a superconducting pairing potential.
The effective surface BAG Hamiltonian is

surf 1 xGy - o* Aoia}’
HédG) ) Z (DL (p _Azk)ig'; —pro? — png) ®p,

P

(11
f

where @, = (cpr ¢py Cip? ¢ )T and Aq represents the ef-
fective pairing potential felt by the surface states. This Hamil-
tonian has a gapped energy spectrum, Ex = £/ p? + |Ag|?.
Thus, a nonzero proximity coupling induces a gap in the
topological surface states. Previous work has shown that
a vortex induced on the proximity-coupled surface traps a
Majorana bound state. This is shown by solving Eq. (11)
with a vortex present, which is inserted by winding the
superconducting order parameter A as

Ag = Ag(r)e’?, 12)

where 6(r) is the polar angle.’

While it may be possible to find Majorana states at
the center of vortices in 3D topological-insulator—s-wave-
superconductor heterostructures, there is not a standard pre-
scription of how to generate such vortices. We consider the
simplest possible route and apply a uniform external magnetic
field perpendicular to the heterostructure. Physically, we must
apply a large enough magnetic field to generate vortices, but
small enough that the vortex density is low, as mentioned
above. As the topological insulator film is not inert to the
addition of flux, we must be careful to account for the effects
of the applied magnetic flux to ensure that it does not spoil
the bound-state structure. For simplicity, we consider only
the one- (analytic results) and two-vortex (numerical results)
problems, noting that the one- and two-vortex problems are
essentially equivalent, and only differ because of the choice of
boundary conditions. If our system contains periodic boundary
conditions in the x and y directions, then we must have an even
number of vortices; this is the situation we consider in our
numerics. If we choose open boundary conditions in x and
v, then a single vortex in the bulk implies the existence of
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another vortex at the boundary or at infinity; this is the case
for our analytic results. We assume that a magnetic flux of
only one ¢y quantum, parallel to the z direction, penetrates the
superconductors. In our heterostructure, the superconductors
on top and bottom would, in principle, dynamically generate
two vortices in each layer. We will assume that the induced
vortices (that we put in by hand) are well separated enough
so that they do not influence each other and that the positions
of the vortices on the top and bottom surfaces share the same
(x,y) position, for simplicity.

Inside the superconductor, the penetrating magnetic field
satisfies the London equation'®

B(r) — A>V?B(r) = %S(r) (13)

near a vortex positioned at the origin with penetration depth
X. The solution for B(r) in the superconductor is

o
4 )2

where K, (x) are modified Bessel functions of the second kind.
The flux within the disk of the radius r is

¢(r) = [1/2 = (r/20)K1(r/2)]. s)

We want to model the effects of B(r) in the entire heterostruc-
ture, including the topological insulator, but this is not easy
to account for. We instead opt for a more phenomenological
approach to capture the qualitative physics. Once the flux
leaves the superconducting layers and enters the topological
insulator film, it will spread out. For our purposes, we will
consider a model where A varies with the depth in the
heterostructure as A = A(z) and study how the vortex physics
changes with A(z). If the film is thin, the flux will not have
sufficient distance to spread before it must reenter the top
superconducting layer, and thus modeling the insulator layer
as having a finite penetration depth (larger than that of the
superconductor) is not unreasonable. In order to understand the
appropriate physics, it is natural, in the context of this problem,
to consider two separate limits associated with the amount
of magnetic flux penetration into the topological insulator.
In the first limit, we wish to examine the “thin-flux” limit
in which the flux that penetrates the topological insulator
does not spread out very far in the topological insulator
before reentering the other superconducting layer. In the
second limit, we examine the case in which the magnetic
flux spreads out widely in the topological insulator before it
must reenter the other superconducting layer. These two limits
can be considered analytically, while we provide numerical
calculations which capture the interpolation between these
cases.

B(r)=2 Ko(r/2), (14)

A. Thin-flux limit (A ~ a)

We begin from the limit of two well-separated, thin-flux
tubes of flux ¢o/2, where the flux tubes are each confined
within single plaquettes, i.e., A < a. When the proximity
pairing potential vanishes, the system will exhibit gapless
modes propagating on each of the thin-flux tubes (ignoring
finite-size splitting due to hybridization with the second
vortex). The resulting gapless theory of a single tube is
simple to understand, using the results from the previous
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section. There we solved Eq. (1) at p, =0 with a m-flux
tube through a single plaquette to obtain the two zero-mode
solutions ¥o4,¥o— (a Kramers’ pair) localized on the flux.
Then we can use k - P perturbation theory and treat p, as a
perturbation to obtain, in the basis of ¥, ¥_, the low-energy
Hamiltonian Hgyx—jine = p,0*. This Hamiltonian is identical
to the edge Hamiltonian of a quantum spin-Hall edge state, as
mentioned earlier. If we begin to increase A, which corresponds
to allowing the magnetic flux to spread uniformly in the z
direction, i.e., we move away from the wormhole limit, this
applies a perturbation to the gapless flux-line Hamiltonian.
Using perturbation theory, we find that

Hpux—tine = pzax +m(M)o” + m),(k)gz’ (16)

where the mass term m; is monotonically increasing as A
increases. This Hamiltonian has a gapped energy spectrum

Ei == /p?24+m? —i—mf,,
reversal is broken and the flux-line Kramers’ degeneracy at
p. = 0 is lifted. Note that we are not increasing the amount
of flux, only the region over which it spreads. If the w-flux
tube is larger than one plaquette, then some bonds in the
lattice model will necessarily have phase factors that have
imaginary contributions to the Hamiltonian, regardless of the
gauge choice, which break the time-reversal symmetry of
the system. Our perturbation theory analysis is approximately

which is expected, since time-

valid until the induced gap Ey = ,/m2 4+ m? approaches the

bulk mass gap m. To estimate the size of the induced gap E
caused by the spreading of the flux in the topological insulator
[¢(r)] in Eq. (15), we apply first-order perturbation theory,

Ey = (Yor | AH |Yo4) = =(Wo- | AH [o-),  (17)

where AH = Hiinear[¢(r)] — Hiinear(¢ = 1/2). Using the pre-
viously obtained expression for Hje,r in Eq. (6), the first-order
approximation for E, in the continuum limit is

oo

Eu Ki(r/))e2amdr’ gy, (18)

a2 ),
We refer to this flux regime as the “thin-flux limit,” i.e., the
regime in which we can consider the low-energy states as those
originating from the gapped wormhole modes.

With the effects of the magnetic flux accounted for, we now
turn to the superconductor proximity effect in the thin-flux
limit. There will be an induced superconducting-pairing po-
tential that is z dependent and, when flux and the corresponding
vortices are present, the superconducting pairing takes on an x
and y dependence as well. Before we get to the situation where
Ay is only nonvanishing near the top and bottom surfaces, let
us consider an induced Ay, which is homogenous in the z
direction over the entire topological insulator. In the thin-flux
limit, the only low-energy metallic degrees of freedom are
localized near the flux line, so we can use our effective flux-line
Hamiltonian from Eq. (16) to form a BdG Hamiltonian for the

low-energy degrees of freedom:
iAQO'y
_H;ux—line(_p) ’

HBO ):l Hiux—1ine(P)
flux—line P ) —iASO‘y
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which has an energy spectrum with four nondegenerate bands,

+E, = :t\/p§+(|Ao| + Ey)*. (19)

This spectrum is gapped, unless |Ag| = | Eps|. Now let us con-
sider more realistic conditions, where the thin film is too thick
to become entirely superconducting and the proximity-induced
pairing depends on z. Specifically, the superconducting-
pairing potential decays as we move away from the surfaces
toward the interior of the topological insulator film. In this
case, the system has a time-reversal, symmetry-breaking
mass E), which is homogenous in the z direction (as per
our phenomenological model) and a superconducting mass
|Ao(z)|, which is z dependent. From standard 1D Dirac
physics,” this model will exhibit localized, zero-energy
Majorana bound states on mass domain walls in the z direction
along the flux line, i.e., the places where |Ay(z)| = |Ey|. As
the thickness of the flux increases, so does E;, and the domain
walls along the vortex line get pushed toward the surface.
This perturbation theory is valid as long as Ey < m. If
we want to be able to carry out a full interpolation between
the thin-flux limit and the thick-flux limit (to be discussed in
the next section), we must rely on a numerical calculation.
We show the results of such a calculation in Fig. 2. We
used a Lanczos exact-diagonalization algorithm to solve for
the zero modes of a full 3D lattice model. The vortices and
proximity effect associated with the superconducting regions
were nondynamical and included in the mean-field limit,
following, for example, Ref. 20. We present the details of
our numerical calculations in Appendix A. As illustrated in
Figs. 2(a)-2(f), when we allow the flux to spread in the
topological insulator film, i.e., as A increases, the domain-wall
bound states, which begin in the interior of the topological
insulator, move outward toward the surface. As discussed in

(a

c)
z z
(f

z z

) (b) (
Z
m -4
@ o © o
z
4 <4
X X

'
X

)

-
X
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the previous paragraph, this can be understood by noting that as
M increases, E )y increases and the position of the mass domain
wall moves toward the surface. As the flux becomes thicker,
the bound states become more localized on the surfaces at
the points around which the superconducting order parameter
winds due to the flux. Since there are two domain walls on
each flux tube, the pair of bound states will hybridize and lie
higher than zero energy, as shown in Fig. 2(g). As A increases,
the hybridization decreases, which rapidly drives the states
toward zero energy.

B. Thick-flux limit (A > a)

From Fig. 2, we see that in the extreme thin-flux limit, the
Majorana modes will penetrate into the bulk and hybridize
with the states on the other surface and annihilate. Fortunately,
as indicated by our analytic perturbation theory, and numeric
lattice model calculations, A does not have to be very large
before we move from the wormhole effect—thin-flux limit so
that the vortex modes are tightly bound to the surface at zero
energy. The wormhole effect simply generates a region in the
bulk with a minigap across which the Majorana states can
tunnel to the opposite surface. While the bulk of a topological
insulator is not inert to flux insertion, as long as the flux is not
tightly bound to a region on the order of a lattice plaquette, the
Majorana states will have difficulty tunneling between the top
and bottom surfaces and will be well localized in the surface
vortex cores.

Once the flux is thick enough to restore the bulk gap entirely,
we can consider the explicit Majorana bound-state solution in
the presence of the magnetic flux from the surface Hamiltonian
alone. We consider the BdG surface-state Hamiltonian in
Eqg. (11) with nonzero vortex winding and magnetic flux. We

The second lowest energy

The lowest energy

[ 0.2 0.4 0.6 0.8 1 1.2 14 1.6

FIG. 2. (Color online) Probability distribution for the lowest energy states corresponding to different superconducting penetration depths
A = (a) 0.001, (b) 0.2, (c) 0.3, (d) 0.4, (e) 0.5, and (f) 1.5. Note that X is in units of the lattice constant a and the entire flux is spread out in
a region with a radius of roughly 5A. The pairing potential A(z) decays from 0.5 on the surface to 0 within five layers. As A is increased,
we see that the states move from being delocalized along the flux tube penetrating the bulk of the topological insulator to being pinned at the
surface. The inset shows a schematic of the spatial variation of the superconducting mass and the time-reversal breaking mass associated with
the magnetization as X varies. (g) The energies of the lowest energy states as a function of A. There are clear zero modes forming as A — oo.
Our numerical results show that in the 1 < a regime, the lowest energy linearly decays as the height of the sample increases; in the A > a
regime, the lowest energy exponentially decays as the height of the sample increases.
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focus on the neighborhood of a single vortex and solve the
problem for generic flux and order parameter profiles in the
continuum limit. We begin by assuming that we have a vortex
at the origin generated by a magnetic flux, given by Eq. (14).
The surface Dirac Hamiltonian is

3 < H(p.¢)  io”Age ™ )
- \—io"Aje? —H*(=p.))’
0 —e710(9, + —212)
H(ps¢) thF (eie(ar _ —i3§+¢) 0 )

(20)

where we have changed to polar coordinates and have
implemented a nonzero vector potential Ag = hi¢(r)/er, where
¢(r) is given in Eq. (15). This Hamiltonian has two eigenstates
with zero energy:

0
1 _pr(achyeen)g | 1
) = ge B DL an
1
e—i@
1 _r(Ach  1-00) !
V) = Ee Jo (%,(,Fu.l o ))dr e(i)e ’ 22)
0

where 8 is a normalization coefficient. If we turn off the
magnetic field, i.e., for ¢ = 0, we are in the Fu-Kane limit with
very diffuse flux and then only the state |1/;) is normalizable,
which matches their result.” For a generic flux profile, there
will still only be one zero-mode solution that satisfies the
boundary conditions and it will be a linear combination
[¥0) = a1(P)|¥1) + ax(@)|¥2). The coefficients a;(¢),ax(¢)
control the spin composition of the zero mode and depend
on not only the detailed boundary conditions but also on the
short-distance physics of the vortex structure.

Since the coefficients a;(¢),a>(¢) depend on the details
of the system, we numerically calculate them. By solving
the eigenvalue problem of Hgﬁré from Eq. (19), a zero-mode
Majorana bound state exists in the core of a vortex. The ratio
of spin up to spin down (|az|/|a;]) for a single zero mode is
shown in Fig. 3. This ratio describes the mixing between the
two allowed zero-energy modes when finite flux is present. We
find that at A ~ 0.1, where the magnetic flux starts to spread
over more that one plaquette, the ratio of spin up and down
starts to decrease rapidly. As A — o0, |az|/|a;| — 0. In this
limit, this is a Fu-Kane Majorana bound state?! possessing a
single species of spin. As A — 0, |az|/|a;| — 1. This limit
is the thin-flux limit, for which we see that the zero modes
have the same portions of spin up and down. This is due to
the fact that in Eq. (16), the Hamiltonian Hpyx—_jine contains
equal portions of spin up and down, and, therefore, the zero
modes in this limit have the same portions of spin up and
down. In short, as A decreases, we move from the thick-flux to
thin-flux limits and |a;(¢)| (Ja2(¢)|) monotonically decreases
(increases). Thus, we find that in the limit where the flux does
not affect the bulk physics, the effective magnetic field only
acts to change the spin composition of the zero-energy vortex
core state.
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FIG. 3. (Color online) Ratio of spin-up to spin-down composition
of a Majorana bound state vs flux penetration depth A. The different
traces represent the use of different superconducting-pairing potential
strengths (A). In the thick-flux limit, a larger A corresponds to a
smaller ratio of spin up and down, leading to spin-polarized Majorana
bound states.

Beyond understanding the spatial extent of the flux spread
on the Majorana states, we wish to look at changing A, which
changes the extent of the Majorana bound state. We fix the
penetration depth of the flux to lie in the thick-flux regime
and consider the probability distribution of the zero modes. In
the thick-flux limit, we find that the spin down dominates the
composition of the Majorana bound states. Therefore, the zero-
mode wave function, described in Eq. (21), has a probability
distribution

P() = (01 | 1) = —ge 2R (23
rp?

The decay length of the probability distribution approximately
equals ivg /A for A > hvp/A. The reason is that as x — O,
Ko(x) ~ —Inx, so then P(r) ~ e 24"/"r which is the Fu-
Kane result.® However, for A < hivg /A, we have to consider
the probability distribution in Eq. (23) directly to find the width
of the zero modes.

It is important to solidify these results by discussing our
results within a realistic context. Therefore, we estimate the
width of Majorana bound states with real physical parameters.
According to Ref. 17, for the BiySe; family of topological
insulators, ivy ~ 4 eV A. For the superconducting top and
bottom layers, we use the pairing potential of the type-II
superconductor niobium, which approximately equals 1 meV.
We assume that the proximity effect, which results in a
pairing potential on the surface of the topological insulator,
has an induced pairing also of the order of 1 meV, which
is the best-case scenario. Using these parameters, the quantity
hvg/A is about 400 nm, which is much larger than the London
penetration depth of 40 nm.?? This combination of parameters
allows us to now plot the probability distribution from Eq. (23)
directly, as shown in Fig. 4. We find that in this case, the width
of a Majorana bound state is of the same order of magnitude as
that of the penetration depth. In general, the Majorana bound
states will have the same characteristics as shown in Fig. 4 for
A < hvp/A. In most experimental regimes, the physics will be
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FIG. 4. (Color online) Probability distribution of a Majorana
bound state in the topological-insulator—s-wave-superconductor het-
erostructure, where we have used realistic material parameters. For
the topological insulator, we have used the parameters of Bi,Ses, and
for the superconducting films on the top and bottom surfaces, we
have used the material parameters of a niobium superconductor with
a single vortex.

deep in the thick-flux region, where only the surface physics
is important. One notable exception would be experiments
where vortex pinning sites are artificially created (e.g., by
drilling through the heterostructure). In this case, there is a
possibility that the holes inside the topological insulator could
trap a sizable fraction of a 7-flux quantum, which will lead to
a minigap region across which the Majorana bound states can
tunnel.

V. CONCLUSION

In conclusion, we have illustrated the effects of magnetic
flux in topological insulator-superconductor heterostructures
in two different regimes. In the thin-flux limit, the Majorana
fermion bound states can be destabilized through hybridiza-
tion, with low-energy bulk states localized near the thin-flux
line. These effects will be more pronounced in thin topological
insulator films with minimal flux spreading, or in samples
where vortex pinning sites are produced by drilling holes
through the heterostructures. If such holes continue to trap
approximately £ /2e flux throughout the topological insulator

H(m)

_
Hoac = Zr:(cf cr) <—A0]I ® ioye i¢m

T H(8)e 7 I Amal 0 Cris
+ Z(Cr cr) L, s t )
oy 0 —H*((S)e’ﬁfr A(r)-dl Cr

where A is the vector potential coming from the magnetic
field B described by the conventional London equation with
penetration depth A, as in Eq. (14), with the cores of the
vortices at ;. The phase ¢(r) acts as an additional “gauge
field” coupled to the quasiparticles. With vortices, ¢(r) is
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film, then the effects of flux in the bulk must be carefully
considered. The opposite regime, where the vortex core does
not feel much effective flux, is likely the physical regime of
most experiments. In this case, we can ignore the bulk effects
and focus only on the surface. The flux in this regime simply
acts to change the spin content of the vortex zero mode and
does not affect its energy or stability. Furthermore, when we
consider the parameters corresponding to a real topological-
insulator—s-wave-superconductor heterostructure with Bi,Ses
as the topological insulator and with niobium superconductor
layers, we find that a Majorana fermion trapped in the magnetic
flux is stable with a spatial extent of around 40 nm.
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APPENDIX A: NUMERICAL CALCULATIONS FOR THE
BULK HAMILTONIAN

We construct the Hamiltonian of a strong topological
insulator sandwiched between two s-wave superconductors
with vortices. The lattice Dirac model we use for the 3D
topological insulator is

Hp =) H(m)clec + ) H@)clerss,
r r.8

. (AD
H((S) _ bF0+1A3 . F’

2
where r indicates the position of the lattice, §(= £af, =+
a¥y, *az) indicates the nearest-neighbor hopping, and I' =
I''x +TI'29 + I';Z. Consider the interface between a strong
topological insulator and an s-wave type-II superconductor
with an even number of vortices. The proximity effect leads
to the pairing potential of the superconductor leaking into
the topological insulator. Near the interface of the topological
insulator, we can write down the 8 x 8 BCS-type lattice BAdG
Hamiltonian

Aol ® iG),€i¢(r) Cr
—H*(m) Bl

H(m) =m — 3b,

(A2)

not a pure gauge: V x Vo(r) = 2nZ Zi 8(r —r;). For the
numerical calculation, we want to cancel out the phase
¢(r) in the order parameter to speed up the simulation.
Although ¢(r) is not a pure gauge, by performing a “bipartite”
singular gauge transformation,”® the phase is successfully
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moved to the diagonal terms of the Hamiltonian. Here, in
our main numerical calculation, we consider two vortices
located at r4 and r®, respectively. A “bipartite” singular
gauge transformation is ¢, = ce'%1™) for the particle part
and ¢, = c.e!?#") for the hole part, where V x Vga(r) =
2m28(r —r) and V x Vop(r) = 2m28(r — r®). This gauge

H(m)
A()H ® iO'y

Hpic = ) (cl ) (_

where

r+d e
/ |:V¢A/B(r) - F—IA(F)} -dl
1 r+s (y _ yA/B) (x — .XA/B)
S1E £+ ;
2 Jr Ir — rA/BJ2 Ir — rA/B2

~ [_@ R P ) }

Ir—rBAR" T —pBrap”

1 Z[(y ).

x —xV
Jr( )y
[r—rv| r —rY|
vAB

xK1<|r;rv|>}.dl.

The size of the topological insulator is (n, — 1) x (n, — 1) x
(n; — 1). In the numerical calculation, we typically used
ny =28, ny, =20, and n, =24, with the lattice constant
a = 1, also with open boundary conditions in all directions. We
are modeling a thin film of topological insulator sandwiched
along the z direction between two s-wave superconductors.
Because of the proximity effect, we assume Ag = Ay(z)
smoothly decays away from the top and the bottom surfaces
and vanishes in the middle region. In the xy plane, let the
center be the origin (0,0). The positions of the two vortices
are set at (nx/4,0) and (—nx/4,0). Also in the thin-film
limit, we assume phenomenologically that the penetration
depth A is independent of z. We choose m = 1.5, b = 1, and
A =hvp = 1. This is a strong topological insulator phase
with topological invariants (1;111). Finally, after solving
the eigenvalue problem to find the lowest energy modes of
the Hamiltonian in Eq. (A3), the probability distributions
of the lowest energy modes with varying A are shown in
Fig. 2.

APPENDIX B: NUMERICAL CALCULATIONS FOR THE
SURFACE HAMILTONIAN

(A4)

In the thick-flux limit, the zero modes are pushed to the
surface of the topological insulator. Therefore, the surface
Hamiltonian can adequately describe the physics of the zero

Al ®io,
—H*(m)
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transformation avoids a multivalued problem so that the
integral ["° Vepa/p(r) - dl = a,p(r + 8) — pa,p(r) is path
independent up to 27wn, which does not affect the prob-
ability distributions of the eigenstates from the numerical
calculation. The Hamiltonian we use in the simulation
becomes

) ()

+5
H(s [Voa(r)—z-A(r)]-dl 0 ¢
+§ (CI Cl‘) ( )e ) e ?HS ’
- 0 _H*((S)e—l fr [Vop(r)—;-A(r)]-dl C
r,

(A3)

he r+3

modes. Solving an eigenvalue problem of the 2D Hamiltonian
allows us to consider a larger size of the system. In the
following, we will derive the surface Hamiltonian from the
bulk BdG Hamiltonian in Eq. (10) with vanishing magnetic
field, and transform it to position space for the simulation. The
bulk BdG Hamiltonian can be written explicitly as

Hpac = 3[M(p)o. ® T + sin p, I @ T'! + sin pyo. @ I'?
+sinp, I @ — Ago, @1 ® 0,

— Ao, ®1 ®0,], B

where Ay and A, are the real and imaginary parts of the order
parameter. We start by finding the zero modes on the surface
of a strong topological insulator. Therefore, to find the
surface—domain-wall zero modes, we need to have H,|y) =
[M(p)o, ® T° + sin p.I @ I'*]|y) = 0. Qualitatively, we can
assume that near the surface for z > 0, m is positive, and
for z < 0, m is negative. Hence, p, is not a good quantum
number. For the low-energy physics, i.e., when we focus
around m ~ 0,k ~ 0, we can safely take the continuum limit
so that sin p, — —id/dz. The wave function of the surface

state is proportional to e = Jy m@)MZ There are four zero-mode
solutions:
| p 1) = F@1,0,i,07, | pl)=F(@0(0,1,0, -,
|7 1) = F@)(1,0, = 1,07, |/ }) = F)0,1,0,0),
e Jo m(zhdz’
F@)= ——, B2
(2) N (B2)

where N is a normalization coefficient; p and & indicate
particle and hole parts, respectively; and 1 , | are associated
with spin up and down. Thus, the projection of the bulk,
Hpgqg, to these four modes is an effective surface Hamiltonian,
which was written in Eq. (11). We note that if the boundary
condition changes (M — — M), then the surface Hamiltonian
is the same in the similar basis of (lIJT,\Ill,\III,\III), while the
basis wave functions of the four zero modes change. For the
top and the bottom surfaces, the physics can be described by
the similar surface Hamiltonian. For convenience, we use a
simple lattice regularization for the numerical calculation of
the 2D H3' in position space with two vortices. For the lattice
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regularization, we use a 2D lattice Dirac model tuned to the critical point:

h(m
Hyig =Y (el e <—A(*i37y

+ Z:(crT ) ( 0

h(m) = mo., h(e) =

Aio,
—h*(m)

h(e)el i IVoam =AMl 0

)

Cr+e
_h*(e)e_i frr+e[v¢8(r)_,ch(r)]_dl) (CI+E> ’ (B3)

o, +iée-y
2 9

where y = (o,, — 0,) and the nearest-neighbor hopping is described by € = +£ and +j. We set m = —2 to have a gapless
two-component, 2D, Dirac-cone Hamiltonian when A vanishes. To avoid boundary effects, we use periodic boundary conditions
in (x,y). We used a size of the surface of n, x n, =120 x 60. The positions of the two vortices are (£30,0). The surface
Hamiltonian calculation shows the ratio of spin up and down in Fig. 3. The use of the lattice Hamiltonian is only valid if we are
looking for low-energy properties of the spectrum, and, for example, it does not satisfy the same symmetry properties under time
reversal that a true surface-state Hamiltonian of a 3D topological insulator would.
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