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Abstract As transistors get smaller, fully quantum mechan-
ical treatments are required to properly simulate them. Most
quantum approaches treat the transport as ballistic, ignor-
ing the scattering that is known to occur in such devices.
Here, we review the method we have developed for per-
forming fully quantum mechanical simulations of nanowire
transistor devices which incorporates scattering through a
real-space self-energy, starting with the assumption that the
interactions are weak. The method we have developed is ap-
plied to investigate the ballistic to diffusive crossover in a
silicon nanowire transistor device.

Keywords Quantum transport · Phonon scattering ·
MOSFET

1 Introduction

The Metal-Oxide-Semiconductor Field-Effect Transistor
(MOSFET) has been the workhorse of the semiconductor
industry for many years, with progress in size and speed
following a well-known scaling relationship [1]. However,
as devices get smaller and smaller, quantum mechanical ef-
fects become more significant, and one eventually expects
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a breakdown of the simple scaling behavior. Correspond-
ingly, the traditional semi-classical tools of device simula-
tion are fast becoming limited. There have been efforts to
expand such methods as Monte Carlo and drift-diffusion to
incorporate quantum effects [2, 3] via an effective quan-
tum potential [4, 5] mainly due to quick and easy results
when compared to the computational resources devoted to
run some current software. This effort has been most notable
in Monte Carlo where the effective potential has found some
success in predicting some of the quantum phenomena aris-
ing in next generation devices [2], such as charge setback
from the gate. However, the effective potential and other
quantum corrective tools cannot account for some physical
phenomena, such as tunneling [6], which will become much
more important as the channel length decreases.

There have been many suggestions for different quantum
methods to model these devices including simple analytical
models [7, 8] Green’s function approaches [9–11] coupled
Schrodinger approaches [12, 13], and Pauli master equa-
tion approaches [14]. However, in each of these methods,
the length and the depth are modeled rigorously, while the
third dimension is usually included through the assumption
that there is no interesting physics to capture in this dimen-
sion. Therefore, the third dimension is usually treated using
a basis expansion which is then included in the Hamiltonian.
It is assumed also that the mode does not change shape as
it propagates from the source of the device to the drain of
the device. Other simulation proposals have simply assumed
that only one subband in the orthogonal direction is occu-
pied, therefore making higher-dimensional transport consid-
erations unnecessary. This is certainly not a valid assump-
tion. While it is true that the mode will not change shape as
it propagates from the source to the drain, it is important to
consider the fact that this mode will couple to other modes,
which is required to treat some of the interesting physics. In
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the source of the device, the modes that are excited are three
dimensional (3D) in nature. These modes are then propa-
gated from the 3D section of the source to the channel. The
excitation of different modes changes as one approaches the
drain, due to the large source-drain bias. Moreover, as the
doping and the Fermi level in short channel MOSFETs in-
creases, we can no longer assume that there is only one oc-
cupied subband even at the source.

Another difficulty that quantum simulators typically en-
counter is how to properly account for dissipation. There
have been many different approaches that have been de-
veloped to attempt to deal with this issue. Statistical ap-
proaches introduce random phase fluctuations into the sim-
ulations [15, 16]. The major drawback of such an approach
is that a large sample space is required over which to av-
erage, and this entails a great many runs to have any valu-
able results. Another method is to add an imaginary term to
the Hamiltonian which represents the phase breaking time
of the electron in the system under consideration [17, 18].
While this approach seems reasonable for a system that is
in equilibrium, it is not clear that it is applicable when the
system is driven out of equilibrium. The imaginary term is
constant throughout the device, and therefore fails to con-
sider the inhomogeneous density in the out of equilibrium
system. This approach has also been questioned as not con-
serving current [19], but this fails to properly consider the
entire dissipative current [20]. Dissipation may also be in-
cluded through the use of Büttiker probes [21, 22]. While
this approach is an improvement over the use of a phase-
breaking related term, in that it is current conserving, it suf-
fers from the fact that an additional loop must be included
to insure that the probes do not change the number of elec-
trons in the system, nor does it account for the spatial in-
homogeneity of the density and the scattering. Moreover, a
fitting parameter must be used to calibrate the probes to the
proper low field mobility. A relaxation time approximation
has also been used in approaches utilizing either the density
matrix [23] or the Wigner function [24].

In an effort to address these difficulties, we have devel-
oped a more complete simulation method that is fully 3D
and accounts for dissipation in a manner which preserves
current conservation and does not require fitting parameters,
while at the same time is not as computationally expensive
as some other approaches [25–28]. Our simulator uses re-
cursive scattering matrices to determine the current flowing
through a given device. During a simulation, one translates
from one transverse slice to the next, which happens to be
equivalent to solving a local Dyson’s equation with each
slice Hamiltonian. This means that we can easily modify this
Hamiltonian by the direct inclusion of a slice self-energy
as well as a self-energy coupling between the slices where
that is appropriate. This self-energy term is how we account

for dissipation within a device, and we can accurately ac-
count for such effects as phonon scattering. Phonon scat-
tering in one and two-dimensional systems (quantum wires
and quantum wells, respectively) is usually treated as transi-
tions between transverse modes [29, 30]. Emberly and Kir-
czenow [31] have introduced inelastic scattering in a recur-
sive wave function approach and Lake and Datta have done
so for the non-equilibrium Green’s function [32]. But these
approaches did not make full use of the computation in real
space that is the heart of such recursive approaches, while
our method does.

In this paper, we review the technique we have developed
for doing fully 3D efficient quantum mechanical transport
simulations, specifically on how it can be applied silicon
quantum wire structures. In Sect. 2, the recursive scattering
matrix method we employ to calculate the transport in quan-
tum devices is described. In Sect. 3, we show how one can
include separable scattering mechanisms into such simula-
tions in a site-representation self-energy. How one accounts
for acoustic deformation potential scattering and interval-
ley scattering with both f and g type processes are shown
in detail. In Sect. 4, we show an application of the tech-
nique that we have developed. We use our simulator to study
an SOI quantum wire, tri-gate MOSFET, examining the ef-
fect that changing the wire cross-section and length has on
the resistance, in order to understand the conditions under
which 1D transport and ballisticity are maintained. As we
shall show, including electron-phonon scattering produces
significant deviations from the ballistic results right down
to the length for which the wire can be considered a true
waveguide.

2 The recursive scattering matrix method for quantum
transport

In the case of silicon, there are six equivalent ellipsoids that
make up the conduction band. The Schrödinger equation for
the wave function contribution from valley i is given by:
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Here, it is assumed that the effective masses are constant, in
order to simplify the equations (to generalize this to nonpar-
abolic bands, the reciprocal mass would enter between the
partial derivatives). The values of the effective masses that
enter into (1) depend on how one chooses to orient the de-
vice with respect to the crystal axes, which is why the valley
index is included in them in (1). A very simple schematic of
a silicon device that is examined later in this paper is shown
in Fig. 1. For the results shown later, the crystal orientation
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Fig. 1 Simple schematic showing an SOI MOSFET and its orientation
with respect to the crystal axes of silicon

of the channel is set so that the current will flow along the
〈110〉 direction, so the x axis shown here is parallel to that,
while the z axis shown here lines up with 〈001〉 direction.

The transport problem is actually solved onto a finite dif-
ference grid with uniform spacing a, with x = sa, y = ka

and z = ηa, where s, k and η are integers. Thus, the deriv-
atives in (1) are replaced with finite differences, and the
Hamiltonian maps onto a tight-binding model
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Given the tight-binding form, an artificial band structure is
created. The band along each direction has a cosinusoidal
variation with momentum eigenvalue, with the total width
of this band being

W = 2t (i)z + 2t (i)z + 2t (i)z . (4)

To properly approximate the real band behavior, which is
quadratic in momentum, we need to keep the Fermi ener-
gies of interest near the bottom of the band, below a value
where the cosinusoidal variation deviates significantly from
the parabolic behavior. For practical purposes, this means
that the maximum Fermi energy must be less than the small-
est hopping energy, the latter being a function of a. With en-
ergies of the order of a 1 V, one is required to have a less
than ∼0.2 nm. That is, we must take the grid size to be com-
parable to the silicon lattice spacing or smaller.

The discrete Schrödinger equation (2) can be used to ob-
tain transfer matrices that allows one to translate across the
structure, which broken down into a series of slices. We
follow a procedure first put forward by Usuki et al. [33]
and used extensively by our group, typically to investigate

the behavior of two-dimensional quantum dots [34]. This
is modified here since the devices now being considered
are fully three dimensional, and so there are two dimen-
sions corresponding to the transverse direction instead of
just one. Each transverse plane contains Ny ×Nz grid points.
Normally, this would produce a second-rank tensor (matrix)
for the wave function, and it would propagate via a fourth-
rank tensor. However, we can re-order the coefficients into a
NyNz × 1 first-rank tensor (i.e. a vector), so that the propa-
gation is handled by a simpler matrix multiplication. Since
the smallest dimension in our calculations is generally in the
z direction, we use Nz for the expansion, and write the vec-
tor wave function as
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Now, (2) can be rewritten as a matrix equation

H(i)�(i)(s) − T (i)
x �(i)(s − 1) − T (i)

x �(i)(s + 1)

= EI�(i)(s). (6)

Here, I is the unit matrix, E is the energy to be found from
the eigenvalue equation, while
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is a Hamiltonian corresponding to an individual slice, and
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represents the inter-slice coupling. The dimension of these
two super-matrices is Nz × Nz, while the basic H0 terms of
(7) have dimension of Ny × Ny , so that the total dimension
of the above two matrices is NyNz × NyNz. In general, if
we take k and j as indices along y, and η and ν as indices
along z, then
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Using (6) and the trivial equation ψ
(i)
s = ψ

(i)
s , one can

construct a transfer matrix equation that relates adjacent
pairs of slices:
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One begins by solving the eigenvalue problem on slice s = 0
at the source end (away from the channel), which determines
the propagating and evanescent modes for a given Fermi en-
ergy in this region. The eigenvectors of (11) have the general
form[ −→um(±)

λm(±)−→um(±)

]
. (12)

Assuming there are q propagating wave modes (|λm| = 1)

in the source of the device and N − q evanescent modes
(N = NyNz), the eigenvalues may be expressed as

λm(±) = e±ikma, m = 1, . . . , q,

λm(±) = e±iκma, m = q + 1, . . . ,N.
(13)

In the above equation, the ± refers to the fact that the modes
come in pairs of left (−) and right (+) traveling waves. One
then collects these together into a matrix

Tleft =
[

U+(0) U−(0)

λ+U+(0) λ−U−(0)

]
, (14)

where the matrices

U±(0) = �u1(±)(0) · · ·uN(±)(0)	, (15)

contain the mode eigenvectors for the s = 0 slice, with the
corresponding eigenvalue matrices

λ± = diag�λ1 · · ·λN(±)	. (16)

One also constructs a matrix for the drain end, Tright, which
is obtained in exactly the same fashion, except that the cal-
culation is done at s = Nz.

We now proceed to calculate the transmission from the
source to the drain of the structure, which is done by solving
the transfer matrix problem

[
t
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]
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rightTNTN−1 · · ·T1Tleft

[
I

r

]
, (17)

where t matrix of transmission amplitudes of waves exiting
from the right part of the structure, and r is the correspond-
ing matrix of amplitudes of waves reflected back towards
the left. The unit matrix, I , and the zero matrix, 0, set the
transport boundary conditions mentioned above. Given the
matrix elements of t , one can calculate the total transmission
for valley i as a function of energy:

T (i)(E) =
∑
m,n

vn

vm

|tn,m|2, (18)

where tn,m represents the transmission amplitude of mode
n to mode m and the summation is only over propagating
modes. Here vn represents the velocity in the x-direction of
nth mode, which can be obtained by taking the expectation
value for each mode of the probability current operator in the
x-direction expressed in the finite difference representation.
The process must be repeated for each valley and the net
transmission, T (E) is the sum over all their contributions.
Importantly, as outlined, this procedure assumes that each
valley can be treated independently.

Unfortunately, the transfer matrix method is numerically
unstable due to the exponentially growing and decaying con-
tributions made by the evanescent modes. This problem can
be overcome by replacing (17) with the following numerical
stable procedure [33, 34], which essentially corresponds to
a cascade of scattering matrices:
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The dimension of these matrices is 2NyNz ×2NyNz, but the
effective propagation is handled by submatrix computations,
through the fact that the second row of this equation sets the
iteration conditions

C
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Under this modified procedure, C1(0) = 1, and C2(0) = 0
are used as the initial conditions at the source end. These
are now propagated to the Nx slice, which is the end of the
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active region. The final transmission matrix is then obtained
from:

t = −(U+(Nx)λ+(Nx))
−1

× [
C

(i)
1 (Nx + 1) − U+(Nx)(U+(Nx)λ+(Nx))

−1]−1
.

(21)

It should be noted that (20) is a form of the Dyson’s
equation for iterative solutions of Green’s function type
behavior [35]. In fact, the two C parameters are proper
Green’s functions, but are normalized by the hopping terms
to be dimensionless. Here, C

(i)
2 plays the role of the on-

site Green’s function G(i, i), and C
(i)
1 plays the role of

the on-site Green’s function G(0, i) [29]. Hence, the hop-
ping Hamiltonian already plays the role of the hopping self-
energy term that couples one slice to the next.

Given the transmission, one can calculate the current
flowing through the device for a given source-drain bias,
Vsd :

I (Vsd) = 2e

h

∫
dE · T (E)

[
fs(E) − fd(E)

]
. (22)

In the above equation, fs and fd are the values of the Fermi
functions at the source contact and drain contacts, respec-
tively, and must be evaluated with the appropriate tempera-
tures and voltages.

If we are to incorporate a self-consistent potential within
the device, we must also solve Poisson’s equation and for
that the electron density is required. Usuki et al. outlined
a method [33] for obtaining the density starting from the
left and working back to the end of the structure. Unfortu-
nately, it entails performing a calculation similar to that for
obtaining the transmission, but for every single slice. As a
result, while the time it takes to calculate T goes as Nx , the
time to reconstruct the wave function instead goes as Nx !,
which makes it very time consuming. Since self-consistency
requires the density to be recalculated numerous times, in-
cluding it becomes impractical for most calculations. We
however found a simple way to make the reconstruction far
more efficient. Instead of going from left to right, one starts
at the end of the structure and works backword. Manipulat-
ing Usuki et al.’s equations, it can be shown [34] that for the
final slice:

ψ
(Nx+1,i)
ξ (j, η) = P

(i)
1 (Nx + 1). (23)

Here, as before, the superscript i denotes the valley, while
j and η denote the transverse position and ξ is the mode
index. One can then proceed to the source end by using the
following recursion relation:

ψ
(s,i)
ξ (j, η) = P

(i)
1 (s) + P

(i)
2 (s)ψ

(s+1,i)
ξ (j, η). (24)

Fig. 2 A conceptual picture of a MOSFET under bias. The source and
drain, as indicated by the two gray areas, may be considered to be
the “contacts.” The areas to the left and right of the effective channel
length indicated here as the decoherence regions, must be considered
part of the active device

Finally, the probability density at any site (s, j, η) is found
by taking the sum over ξ of the occupied modes at that site,
as

n
(i)
L (s, j, η) =

∑
ξ

∣∣ψ(s,i)
ξ (j, η)

∣∣2
. (25)

This expression gives the contribution to the probability den-
sity from valley i assuming that the electron waves are in-
cident from the left. Importantly, when one solves the Pois-
son equation, one must also compute and add in the contri-
bution to the density from waves that start from the right,
which means repeating the transmission and density calcu-
lation outlined above but translating from drain to source.
To understand why this is so, consider the simplified poten-
tial profile of a MOSFET under bias shown in Fig. 2. From
the source end, there is a small potential barrier between the
source and the channel, and then the potential falls to the
level of the drain potential (the energy is shown, this has a
negative sign from the voltage). In his elementary 1D theory
of ballistic transport, Lundstrom [36] identifies two major
scattering regions, the barrier between the channel and the
source, and within the channel, each of which contributes
separate reflection coefficients. Higher reflectance of course
means lower transmission and thus lower current. As one
might expect, the shape of the potential barrier is of key im-
portance with respect to determining just how much trans-
mission there is. The nature of the barrier in Fig. 2 is that of a
self-consistent potential subject to a constraint of the applied
gate and drain voltages. The exact distribution of charge in
the channel and in the drain will affect this potential barrier
due to the nonlinear feedback of solving Poisson’s equation.
Thus, one needs the contribution to the total density starting
from the drain end, as well as from the source in order for
this to be accurately modeled.

Before being fed into the 3D Poisson equation, the prob-
ability density is then weighted by the appropriate thermal
and density of states factors [37–39] and converted into a
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true electron density. In our calculations, one starts from an
initial potential profile and solves the transport problem to
obtain the density. A new potential profile is then obtained
from the density by solving Poisson’s equation and then the
transport problem is solved again. This process repeated un-
til a desired level of convergence is obtained.

3 Treatment of scattering by the inclusion
of a self-energy term

Because of the form of equation (20), it becomes quite sim-
ple to modify the recursive formulation by the addition of an
on-site self-energy:

H0 ≡ H(i)(s) → H = H(i)(s) + 
i,s . (26)

The self-energy 
 has both real and imaginary parts, with
the latter representing the dissipative interactions. In semi-
conductors, the scattering is weak, and is traditionally
treated by first-order time-dependent perturbation theory,
which yields the common Fermi golden rule for scattering
rates. With such weak scattering, the real part of the self-
energy can generally be ignored for the phonon interactions,
and that part that arises from the carrier-carrier interactions
is incorporated into the solutions of Poisson’s equation by a
local-density approximation, which approximately accounts
for the Hartree-Fock corrections [38]. In the many-body for-
mulations of the self-energy, the latter is a two-site function
in that it is written as [40]


(r1, r2). (27)

In our case, where we are using transverse modes in the
quantum wire, this may be rewritten as


(i, j ; i′, j ′, x1, x2). (28)

Here, the scattering accounts for transitions from transverse
mode i, j at position x1 to i′, j ′ at position x2. Generally,
one then makes a center-of-mass transformation [40, 41]

X = x1 + x2

2
, ξ = x1 − x2, (29)

and then Fourier transforms on the difference variable to
give


(i, j ; i′, j ′,X, kx)

= 1

2π

∫
dξeiξkx 
(i, j ; i′, j ′,X, ξ). (30)

The center-of-mass position X remains in the problem as the
mode structure may change as one moves along the channel.
At this point, the left-hand side of (30) is the self-energy

computed by the normal scattering rates, such as is done
in quantum wells and quantum wires previously [30, 31].
However, these previous calculation usually used the Fermi
golden rule, which is an evaluation of the bare self-energy
in (30). In many-body approaches, one normally does not
use the energy-conserving delta function that is the central
part of the Fermi golden rule. Rather, this function is broad-
ened into the spectral density, through the use of the self-
consistent Born approximation (see, e.g. [9]). In this way,
off shell effects are taken into account through this broad-
ening of the relationship between momentum and energy.
In semiconductors, however, we have already noted that the
scattering is weak. It has been pointed out that these off-
shell corrections are only important in fast processes where
we are interested in femtosecond response and their ne-
glect introduces only slight errors for times large compared
to the collision duration [42]. Moreover, the broadening of
the delta function will not be apparent when we reverse the
Fourier transform of (30), as the area under the spectral den-
sity remains normalized to unity [38]. Since our recursion
in (20) is in the site representation, rather than in a mode
representation, we have to reverse the Fourier transform in
(30) to get the x-axis variation, and do a mode-to-site uni-
tary transformation to get the self-energy in the form nec-
essary for the recursion. This is the subject of the rest of
this section, where we discuss the different phonon scatter-
ing processes. Hence, we begin by seeking the imaginary
part of the self-energy, which is related to the scattering rate
via

Im{
(i, j ; i′, j ′,X, kx)} = �

(
1

τ

)i′,j ′

i,j

. (31)

It is the latter scattering rate which we calculate for the vari-
ous scattering processes. This result will be a function of the
x-directed momentum (which is related, in turn, to the en-
ergy of the carrier) in the quantum wire. This scattering rate
must be converted to the site representation with a unitary
transformation

 = Im{
} = U+
(

�

τ

)i′,j ′

i,j

U, (32)

where U is a unitary mode-to-site transformation ma-
trix as discussed in Sect. 2. The unitary matrix U+ re-
sults from the eigenvector solutions in the transverse slice
and are composed of the various eigenfunctions in the
site basis. Hence, it represents a mode-to-slice transforma-
tion.

Besides the corrections to the site energies as outlined
above, scattering introduces another complication if inter-
valley processes are allowed. The transmission method as
described in Sect. 2 assumes that there is no coupling be-
tween valleys, and the calculation is done one valley at a



84 J Comput Electron (2009) 8: 78–89

Fig. 3 Schematic of the parabolic bandstructure used in the formula-
tion of the scattering method

time. When inter-valley scattering is allowed, then the con-
tributions from valleys must be treated in tandem. It is the
same basic calculation, except that the matrices are all ex-
panded in size and new off-diagonal terms appear. For ex-
ample, U and U+ must now contain eigenvectors from all
the valleys, not just one.

We now consider the case of acoustic phonon scattering.
The Fermi golden rule scattering rate for acoustic phonons is
treated in nearly all textbooks, and the only modification is
to account for the transverse modes of the quantum wire. As
mentioned above, this has previously been treated for quan-
tum wells and for silicon quantum wires. Hence, we begin
with the general form
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i,j

= 2π
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D2
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I nm
n′m′

∑
−→
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Here, the acoustic phonon is treated, as is normal, as quasi-
elastic in that the energy transferred to the acoustic mode
is considerably smaller than the carrier energy [43, 44], and
the delta function in (9) serves to conserve the energy in
the process. The overlap integral gives the mode-to-mode
coupling, as

I
i′,j ′
i,j = A

4π2V

∫ ∫
dydz

[
ϕ∗

i,j (y, z)ϕi′,j ′(y, z)
]2

, (34)

where ϕi,j (y, z) is the transverse wave function in the par-
ticular slice. The difference here from the form in a quan-
tum well is that these transverse wave functions are two-
dimensional rather than one-dimensional, while the momen-
tum vector k is a one-dimensional quantity.

In the above equations, Ek and Ek′ are the energies corre-
sponding to the initial and final energy states in the assumed
parabolic subbands, which may be defined through the use
of Fig. 3. Here, we illustrate a simple two subband model to
define the initial and final energies. E0,ij is the energy value
corresponding to kx = 0 in the initial subband, while E0,i′j ′
corresponds to the value of the energy in the final subband

with a k′
x = 0 value. With these definitions,

Ek = E0,ij + �
2k2

1

2m∗
x

, (35)

and

Ek′ = E0,i′j ′ + �
2k2

2

2m∗
x

. (36)

From this, the difference between the initial and final ener-
gies becomes

Ek − Ek′ = E0,ij − E0,i′j ′ + �
2

2m∗
x

(k2
1 − k2

2). (37)

To solve for k2 in terms of k1 and the difference between the
initial and final energies, we denote

�
i′j ′
ij = E0,ij − E0,i′j ′ (38)

and

k2
2 = k2

1 + 2m∗
x

�2
�

i′j ′
ij . (39)

Following the usual procedure, the summation over final
momentum states is replaced with an integration, as

∑
k′

→ L

2π

∫ ∞

−∞
dk′ =

∫ ∞

0
ρ1D(E′)dE′. (40)

We now combine (40) with (34) to obtain
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I
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∂k′ |

, (41)

where the last term is evaluated using (39). The scattering
rate is then

(
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)i′,j ′
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xD

2
ackBT

2�3ρv2
s

LI
i′,j ′
i,j√

k2 + 2m∗
x�

i′j ′
ij

�2

θ

(
k2 + 2m∗
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i′j ′
ij

�2

)
, (42)

where θ is the Heavyside step function [θ(x) = 1 for x > 0,
and 0 for x < 0].

Now, for our real space quantum transport approach, we
need to reverse the Fourier transform in (30). That is, we use
the inverse transform to real space from momentum space
and obtain the final form for the acoustic deformation po-
tential scattering rate. The Fourier integral is
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(
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β =
√

−2m∗
x�

i′j ′
ij

�2
.

The lower limit in the integration results in zero if �
i′j ′
ij > 0.

From Fig. 2, it can be seen that scattering cannot occur from
the lower subband to the upper subband unless there is a
minimum momentum (or energy), and this accounts for the
non-zero lower limit in the integration for such situations.

We consider the case of �
i′j ′
ij ≤ 0 here, and the integration

can then be carried out easily to yield (the other cases are
also easily done)

(
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τ

)i′,j ′
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(x − x′)

= m∗
xD

2
ackBT

2�3ρv2
s

(LI
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1√
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×
{

π

2
− βSi[−iβ(x − x′)] cosh[β(x − x′)]

− βCi[−iβ(x − x′)] sinh[β(x − x′)]
}
. (44)

The term in curly brackets is sharply peaked around x =
x′, which implies the scattering is local with regard to the
individual slices in the recursion. There is coupling between
the modes within a slice, but this local (to the slice) behavior
is just the normal assumption in quasi-classical cases, where
the scattering is assumed to be local in space [45]. Yet we
need to know the total scattering rate within the slice, so
this is achieved by integrating over x′ in order to find the
resultant scattering weight

(
1

τac

)i′,j ′

i,j

= m∗
xD

2
ackBT

4�3ρv2
s

(LI
i′,j ′
i,j )

√
π

2
. (45)

Finally, this scattering rate must be converted to the site rep-
resentation with a unitary transformation given by (32).

Scattering between the equivalent valleys of silicon is
carried out by high energy optical modes. In general, there
two types of phonons, the f phonons between valleys on
different axes in momentum space and g phonons between
the two valleys along the same coordinate axis [46, 47].
There are several phonons which can contribute to each of
these processes [48], but the treatment for each is the same.
The differences from the acoustic mode treatment lie in the

fact that the energy of the phonon can no longer be ignored
in (37), and the phonon distribution function cannot be ap-
proximated by a equi-partition approximation. Hence, we
need to treat the emission and absorption of phonons dif-
ferently, but the result is very similar. In general, the case
for phonon absorption yields the result (analogous to (42))

(
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(46)

where now

�
i′j ′
ij = E0,ij − E0,i′j ′ + �ωq. (47)

In the case of the emission of a phonon, Nq in (46) is re-
placed by Nq +1, and the positive sign in front of the phonon
energy in (47) is replaced by a negative sign. However, there
are further complications in the case of phonon emission
which we will address below. For the absorption case, it is
apparent that the form of the resulting equation is the same
as that of the acoustic phonons, and we can use the same
integration results for the inverse Fourier transform and for
the site summation to yield the scattering strength. Basically,
only the parameters in the leading coefficient are changed.
Hence, we can immediately adapt (45) to give the result
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2
. (48)

Once again, this is now inserted into (32) to get the site rep-
resentation.

As mentioned above, the emission case has some compli-
cations. We must consider three different cases correspond-
ing to different values for the energy difference from the ini-
tial subband to the final subband and the emitted phonon

energy: �
i′j ′
ij < 0, �

i′j ′
ij > 0, and �

i′j ′
ij = 0. In each case,

the Fourier transform is solved through the use of contour
integrations.

1. �
i′j ′
ij < 0. The resultant Fourier integral is
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dk. (49)

While an exact closed form for the integral cannot be
found, it can be closely approximated as
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As previously, this is localized, and we integrate over x′ to
get the total scattering strength. This leads to
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2. �
i′j ′
ij > 0. The major factor here is the change in the

sign of the second term in the square root in the denominator
of (46), which leads to
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Using an asymptotic expansion of the Bessel function of an
imaginary argument results in
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We now integrate x′ to determine the total scattering
strength. The final result is

(
1

τiv_em

)i′,j ′

i,j

(x − x′) = m∗
xD

2
iv(Nq + 1)

16πρ�2ωqL
(I

i′,j ′
i,j )

(
3

2

)
.

(54)

3. �
i′j ′
ij = 0. In this case, the Fourier integral is
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Once again, x′ is integrated out of the equation to determine
the magnitude of the delta function. The final result is

(
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4 Application of the method: determining the ballistic
to diffusive crossover in a SOI MOSFET

In this section, we show an application of the methodol-
ogy described above. We consider an SOI MOSFET, with
its channel aligned along the (110) direction, as shown ear-
lier in Fig. 1. For the device under consideration here, the
thickness of the silicon layer is 6.51 nm. Oxide barriers were
placed on either side of the channel to simulate the appear-
ance of a hard wall boundary that would be present in an
actual experimental system. The source and drain of the de-
vice are 36.93 nm wide and 27.15 nm in length. The source
and drain of the device are discretely doped n-type with a
doping concentration of 1 × 1020 cm−3, while the channel
is undoped. The quantum wire that forms the channel of the
device has metal gates on three sides to form a trigate-type
transistor [49]. The gate oxide thickness (SiO2) on this de-
vice was 1 nm. Figure 4 shows a cutaway view of our device,
showing source, channel and drain, with dopant positions in-
dicated. It should be noted that the effect of the presence of
dopants in our approach is included as a local correction to
the potential in the Hamiltonian. No scattering rate calcu-
lation is performed or required for them using our method.
As would be the case in a real device, the dopants placed
in random locations, according to the prescription outlined
by Wong and Taur [50]. The same doping profile is used for

Fig. 4 Cutaway overview of the SOI MOSFET device, showing
dopant atoms in the source and drain. The interior shading indicates
the electron density. For clarity, a relatively long channel length was
used to generate this picture
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each of the cases we examined, and the source and drain re-
gions were left untouched at the channel length and channel
width were varied. In every case, the gate voltage was set at
Vg = 0.6 V, while the source-drain bias was Vsd = 0.01 V.

Our goal here is to determine the point where this MOS-
FET exhibits a ballistic to diffusive crossover as a function
of channel length. In general, it has been suggested that the
transport in small transistors is ballistic, and that once a car-
rier enters the channel it will continue to the drain, with no
chance to scatter back to the source [8, 51]. However, it has
been shown that scattering within the channel will cause
second-order effects which do affect the terminal charac-
teristics of the transistor [52], and thus far, the search for
ballistic behavior has not been so successful.

When the transport is ballistic, the resistance of the chan-
nel will be determined by the inverse of the Landauer con-
ductance, as

Rballistic =
[

2e2

h
N

]−1

, (57)

where N is the number of transverse modes propagating
through the wire, e is the electric charge and h is Planck’s
constant. Importantly, there is no dependence upon the
length of the wire. On the other hand, when the resistance
is determined by the mobility (μ) and carrier density (n),
then the resistance is given by

Rdiffusive =
[

1

σ

]
Lch

A
= 1

neμ

Lch

A
, (58)

where Lch is the channel length and A is the “cross-sectional
area” of the inversion layer. We use the area here, rather than
just the width of the two-dimensional layer, as we are deal-
ing with a three-dimensional wire with full quantization in
the transverse direction. Clearly, in this latter case, the re-
sistance increases linearly with the channel length. It is the
value of Lch where there is a change from (56) to (57) that
we seek to determine.

Figure 5 shows the computed resistance for a device with
a channel width of 6.5 nm. For these results, acoustic defor-
mation potential scattering and intervalley scattering with
both f and g type processes were included. At a temper-
ature of 100 K, the electron-phonon scattering is largely
suppressed, and in this case resistance quickly rises as
function of channel length and then essentially saturates at
Lch ∼ 2 nm. However, at T = 300 K, the resistance contin-
ues to rise in a more or less linear fashion. This result is con-
sistent with other simulations we have done with the channel
aligned along the 〈001〉 direction and at higher biases [26],
which saw an apparent ballistic to diffusive crossover at
Lch ∼ 2 nm. Note here that the resistance is actually lower
for the T = 300 K case for very short channels lengths. In

Fig. 5 Resistance vs. Lch for a device with channel width
wch = 6.5 nm at 100 K and 300 K

Fig. 6 Resistance vs. Lch for a device with channel width
wch = 6.5 nm for the case of a perfect, ballistic wire without scattering

this particular case, conditions are such that the electron-
phonon scattering is able to excite electrons over the effec-
tive barrier created by the channel, thus reducing the resis-
tance.

To understand what is special about Lch ∼ 2 nm, we have
also performed a calculation for the ideal, ballistic case. This
is shown in Fig. 6. Here, a perfect wire is used without
any scattering at all from phonons or impurities, but with
simple thermal broadening included using Fermi functions
with T = 300 K. As is evident, Lch ∼ 2 nm is the approxi-
mate length for which the resistance saturates in the ballis-
tic case. Beyond this length, the wire acts as an ideal quan-
tum point contact (QPC) for which the transmission is quan-
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Fig. 7 (a) Resistance vs. Lch for a device with wch = 4.3 nm at the
indicated temperatures. (b) As in (a), but for wch = 9.7 nm

tized and proportional to the number of propagating modes
in the wire. The effects of this quantization are evident even
with the thermal broadening. However, at shorter lengths,
evanescent wire modes that have not decayed can contribute,
destroying the conductance quantization and decreasing the
resistance.

Figures 7(a) and (b) shows results for a narrower (wch =
4.3 nm) and a wider (wch = 9.7 nm) channel respectively.
As in the first example, the T = 100 K and T = 300 K
curves here appear to deviate in their behaviour at
Lch ∼ 2 nm, indicating that once again that the effects of
electron-phonon scattering start to dominate at that length.
Both T = 300 K curves show a kink at Lch ∼ 5 nm (this is
also apparent in wch = 6.5 nm case, but is less pronounced).
This effect is mainly due to the local impurity configuration
at the ends of the channel happening to allow for a compar-
atively enhanced transmission in this particular case. Since
we are dealing with discrete dopants that yield local poten-

Fig. 8 (a) Direct comparison of the resistance results for the three
channel width cases computed at T = 300 K. (b) The same compar-
ison, but for T = 100 K

tial fluctuations that can either reflect or draw in electron
waves, smooth curves will only occur if an ensemble av-
erage over different impurity configurations is performed.
While the wch = 9.7 nm resistance looks approximately lin-
ear at T = 300 K, the wch = 4.3 nm resistance appears to
rise with a dependence that is more exponential in nature,
as if what was being observed was akin to tunnelling. We
note here that, at a width wch = 4.3 nm, the wire is narrow
enough to be near the point of pinch-off, where no modes
are transmitted through the wire.

In Fig. 8, the results for the three channel widths are com-
pared directly. Clearly, as shown in Fig. 8(a), the resistance
in the wch = 4.3 nm case rises at a far more rapid rate at
300 K than for the wider channels. At T = 100 K, the wider
channels show the Lch ∼ 2 nm saturation behaviour noted
earlier, with a simple resistance offset separating the curves,
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as shown in Fig. 8(b). This is consistent with our discus-
sion above about this length coinciding with the establish-
ment of true QPC behavior. Interestingly, the wch = 4.3 nm
resistance curve for T = 100 K looks somewhat like the
wch = 9.7 nm result for 300 K. Clearly, nearer to pinch-
off, weaker electron-phonon scattering can have a more pro-
nounced effect on the resistance.

5 Conclusions

In this paper, we have reviewed the technique that we have
developed for performing quantum transport simulations of
nanowire MOSFET transistors, which incorporates a simple
physical approach to including separable scattering mecha-
nisms as a self-energy correction in a real-space. Derivations
of the scattering contributions for acoustic deformation po-
tential and intervalley phonon scattering with both f and
g type processes included were provided. Needless to say,
any other scattering mechanisms that one chose to consider
could be incorporated in a similar fashion. In that regard, it
should be noted that our method is highly flexible and can
be applied to many different kinds of systems. It has been
used to simulate InAs tri-gate transistors [28], and transport
through molecules [53], for example.

As an example application of our method, we presented
results of transport simulations of short 3D silicon quantum
wires including electron-phonon scattering, comparing re-
sults for different channel widths. At room temperature, we
found that the resistance deviates from the ballistic predic-
tion, even down to the length at which the wire becomes a
true waveguide.
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42. Špička, V., Velický, B., Kalvová, A.: Physica E 29, 154 (2005)
43. Brooks, H.: Adv. Phys. 7, 85 (1955)
44. Schockley, W.: Electrons and Holes in Semiconductors. Van Nos-

trand, Princeton (1950)
45. Barker, J.R.: In: Ferry, D.K., Barker, J.R., Jacoboni, C. (eds.)

Physics of Nonlinear Transport in Semiconductors, p. 126.
Plenum Press, New York (1980)

46. Long, D.: Phys. Rev. 120, 2024 (1960)
47. Ferry, D.K.: Phys. Rev. B 12, 2361 (1975)
48. Ferry, D.K.: Semiconductors. Macmillan, New York (1991)
49. Doyle, H.S., Datta, S., Doczy, M., Hareland, S., Jin, B., Kava-

lieros, J., Linton, T., Murthy, A., Rios, R., Chau, R.: IEEE Elec-
tron Device Lett. 24, 263 (2003)

50. Wong, H.S., Taur, Y.: IEDM Tech. Dig., p. 705 (1993)
51. Lundstrom, M.: IEEE Electron Device Lett. 18, 361 (1997)
52. Svizhenko, A., Anantram, M.P.: IEEE Trans. Electron Devices 50,

1459 (2003)
53. Speyer, G., Akis, R., Ferry, D.K.: Superlattices Microstruct. 34,

429 (2003)


	A method for performing fully quantum mechanical simulations of gated silicon quantum wire structures
	Abstract
	Introduction
	The recursive scattering matrix method for quantum transport
	Treatment of scattering by the inclusion of a self-energy term
	Application of the method: determining the ballistic to diffusive crossover in a SOI MOSFET
	Conclusions
	Acknowledgement
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 600
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <>
    /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


