
Problem #2:

Consider the p^+ -n junction pictured above and answer the following:

- a. What does the I-V characteristic look like? Can you find an expression for it?
- b. How does it change if we make $\tau_p > 0$ from $x_b < x < x_c$?

Problem #3:

The maximum power delivered by a solar cell can be found by maximizing the I-V product.

a. Show that maximizing the power leads to the expression: $\left(1 + \frac{q}{kT}V_{mp}\right)e^{qV_{mp}/kT} =$

 $1 + \frac{I_{sc}}{I_{th}}$ where V_{mp} is the voltage for maximum power, I_{sc} is the magnitude of the shortcircuit current, and I_{th} is the thermally induced reverse saturation current.

b. Assume a silicon solar cell with a dark saturation current I_{th} of 1.5 nA is illuminated such that the short-circuit current is $I_{sc} = 100$ mA. Use a graphical solution to obtain the voltage Vmp at the maximum power delivered.